Optical polariton modes in a nanoscale semiconductor
Because of the existence of an exciton-biexciton transition inside an optically excited semiconductor, the dielectric constant is modified to be a wave-vector-dependent function. The spatial dispersion relation leads to three propagating modes of polariton, for which two additional boundary conditio...
Gespeichert in:
Veröffentlicht in: | Optics letters 2009-11, Vol.34 (21), p.3436-3438 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3438 |
---|---|
container_issue | 21 |
container_start_page | 3436 |
container_title | Optics letters |
container_volume | 34 |
creator | Bao, Gang Sun, Yuanchang |
description | Because of the existence of an exciton-biexciton transition inside an optically excited semiconductor, the dielectric constant is modified to be a wave-vector-dependent function. The spatial dispersion relation leads to three propagating modes of polariton, for which two additional boundary conditions will be required. In the vicinity of a resonance, the mathematical study shows that two modes among the three dominate, and the third wave with a large imaginary part can be neglected without affecting the essential physics. Based on the study, a criterion is developed for selecting the appropriate modes. Numerical results are presented for a thin semiconducting film. |
doi_str_mv | 10.1364/OL.34.003436 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733615570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733615570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-bf0d3e8efe710ab2250249584193355e66808146bb16fa1af2018ae9becdb1773</originalsourceid><addsrcrecordid>eNpF0E1LxDAQBuAgiruu3jxLL-LFrpl85yiLX1DoRc8hTVOotE1N2oP_3soWPc1hHl5mXoSuAe-BCvZQFnvK9hhTRsUJ2gKnOmdSs1O0xcBErrkmG3SR0ifGWEhKz9EGtFIgQG8RK8epdbbLxtDZ2E5hyPpQ-5S1Q2azwQ4hLVufJd-3Lgz17KYQL9FZY7vkr9a5Qx_PT--H17woX94Oj0XuiJRTXjW4pl75xkvAtiKEY8I0Vww0pZx7IRRWy4lVBaKxYBuCQVmvK-_qCqSkO3R3zB1j-Jp9mkzfJue7zg4-zMkszwjgXOJF3h-liyGl6Bszxra38dsANr81mbIwlJljTQu_WYPnqvf1P157WcDtCuzv_020g2vTnyMEuBKU0h8_5m4o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733615570</pqid></control><display><type>article</type><title>Optical polariton modes in a nanoscale semiconductor</title><source>Optica Publishing Group Journals</source><creator>Bao, Gang ; Sun, Yuanchang</creator><creatorcontrib>Bao, Gang ; Sun, Yuanchang</creatorcontrib><description>Because of the existence of an exciton-biexciton transition inside an optically excited semiconductor, the dielectric constant is modified to be a wave-vector-dependent function. The spatial dispersion relation leads to three propagating modes of polariton, for which two additional boundary conditions will be required. In the vicinity of a resonance, the mathematical study shows that two modes among the three dominate, and the third wave with a large imaginary part can be neglected without affecting the essential physics. Based on the study, a criterion is developed for selecting the appropriate modes. Numerical results are presented for a thin semiconducting film.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.34.003436</identifier><identifier>PMID: 19881619</identifier><identifier>CODEN: OPLEDP</identifier><language>eng</language><publisher>Washington, DC: Optical Society of America</publisher><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Mathematical methods in physics ; Numerical approximation and analysis ; Physics ; Surface and interface electron states</subject><ispartof>Optics letters, 2009-11, Vol.34 (21), p.3436-3438</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-bf0d3e8efe710ab2250249584193355e66808146bb16fa1af2018ae9becdb1773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3256,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22158633$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19881619$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bao, Gang</creatorcontrib><creatorcontrib>Sun, Yuanchang</creatorcontrib><title>Optical polariton modes in a nanoscale semiconductor</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>Because of the existence of an exciton-biexciton transition inside an optically excited semiconductor, the dielectric constant is modified to be a wave-vector-dependent function. The spatial dispersion relation leads to three propagating modes of polariton, for which two additional boundary conditions will be required. In the vicinity of a resonance, the mathematical study shows that two modes among the three dominate, and the third wave with a large imaginary part can be neglected without affecting the essential physics. Based on the study, a criterion is developed for selecting the appropriate modes. Numerical results are presented for a thin semiconducting film.</description><subject>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Mathematical methods in physics</subject><subject>Numerical approximation and analysis</subject><subject>Physics</subject><subject>Surface and interface electron states</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpF0E1LxDAQBuAgiruu3jxLL-LFrpl85yiLX1DoRc8hTVOotE1N2oP_3soWPc1hHl5mXoSuAe-BCvZQFnvK9hhTRsUJ2gKnOmdSs1O0xcBErrkmG3SR0ifGWEhKz9EGtFIgQG8RK8epdbbLxtDZ2E5hyPpQ-5S1Q2azwQ4hLVufJd-3Lgz17KYQL9FZY7vkr9a5Qx_PT--H17woX94Oj0XuiJRTXjW4pl75xkvAtiKEY8I0Vww0pZx7IRRWy4lVBaKxYBuCQVmvK-_qCqSkO3R3zB1j-Jp9mkzfJue7zg4-zMkszwjgXOJF3h-liyGl6Bszxra38dsANr81mbIwlJljTQu_WYPnqvf1P157WcDtCuzv_020g2vTnyMEuBKU0h8_5m4o</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Bao, Gang</creator><creator>Sun, Yuanchang</creator><general>Optical Society of America</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091101</creationdate><title>Optical polariton modes in a nanoscale semiconductor</title><author>Bao, Gang ; Sun, Yuanchang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-bf0d3e8efe710ab2250249584193355e66808146bb16fa1af2018ae9becdb1773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Collective excitations (including excitons, polarons, plasmons and other charge-density excitations)</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Mathematical methods in physics</topic><topic>Numerical approximation and analysis</topic><topic>Physics</topic><topic>Surface and interface electron states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Gang</creatorcontrib><creatorcontrib>Sun, Yuanchang</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Gang</au><au>Sun, Yuanchang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical polariton modes in a nanoscale semiconductor</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>34</volume><issue>21</issue><spage>3436</spage><epage>3438</epage><pages>3436-3438</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><coden>OPLEDP</coden><abstract>Because of the existence of an exciton-biexciton transition inside an optically excited semiconductor, the dielectric constant is modified to be a wave-vector-dependent function. The spatial dispersion relation leads to three propagating modes of polariton, for which two additional boundary conditions will be required. In the vicinity of a resonance, the mathematical study shows that two modes among the three dominate, and the third wave with a large imaginary part can be neglected without affecting the essential physics. Based on the study, a criterion is developed for selecting the appropriate modes. Numerical results are presented for a thin semiconducting film.</abstract><cop>Washington, DC</cop><pub>Optical Society of America</pub><pmid>19881619</pmid><doi>10.1364/OL.34.003436</doi><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-9592 |
ispartof | Optics letters, 2009-11, Vol.34 (21), p.3436-3438 |
issn | 0146-9592 1539-4794 |
language | eng |
recordid | cdi_proquest_miscellaneous_733615570 |
source | Optica Publishing Group Journals |
subjects | Collective excitations (including excitons, polarons, plasmons and other charge-density excitations) Condensed matter: electronic structure, electrical, magnetic, and optical properties Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Exact sciences and technology Mathematical methods in physics Numerical approximation and analysis Physics Surface and interface electron states |
title | Optical polariton modes in a nanoscale semiconductor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A32%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20polariton%20modes%20in%20a%20nanoscale%20semiconductor&rft.jtitle=Optics%20letters&rft.au=Bao,%20Gang&rft.date=2009-11-01&rft.volume=34&rft.issue=21&rft.spage=3436&rft.epage=3438&rft.pages=3436-3438&rft.issn=0146-9592&rft.eissn=1539-4794&rft.coden=OPLEDP&rft_id=info:doi/10.1364/OL.34.003436&rft_dat=%3Cproquest_cross%3E733615570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733615570&rft_id=info:pmid/19881619&rfr_iscdi=true |