Tunable Nanoscale Graphene Magnetometers

The detection of magnetic fields with nanoscale resolution is a fundamental challenge for scanning probe magnetometry, biosensing, and magnetic storage. Current technologies based on giant magnetoresistance and tunneling magnetoresistance are limited at small sizes by thermal magnetic noise and spin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2010-01, Vol.10 (1), p.341-346
Hauptverfasser: Pisana, Simone, Braganca, Patrick M, Marinero, Ernesto E, Gurney, Bruce A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue 1
container_start_page 341
container_title Nano letters
container_volume 10
creator Pisana, Simone
Braganca, Patrick M
Marinero, Ernesto E
Gurney, Bruce A
description The detection of magnetic fields with nanoscale resolution is a fundamental challenge for scanning probe magnetometry, biosensing, and magnetic storage. Current technologies based on giant magnetoresistance and tunneling magnetoresistance are limited at small sizes by thermal magnetic noise and spin-torque instability. These limitations do not affect Hall sensors consisting of high mobility semiconductors or metal thin films, but the loss of magnetic flux throughout the sensor’s thickness greatly limits spatial resolution and sensitivity. Here we demonstrate graphene extraordinary magnetoresistance devices that combine the Hall effect and enhanced geometric magnetoresistance, yielding sensitivities rivaling that of state of the art sensors but do so with subnanometer sense layer thickness at the sensor surface. Back-gating provides the ability to control sensor characteristics, which can mitigate both inherent variations in material properties and fabrication-induced device-to-device variability that is unavoidable at the nanoscale.
doi_str_mv 10.1021/nl903690y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733611801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733611801</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-7cafad9d62d5002e89920720c4fbcf7c7819782affc7b9e491855348537792de3</originalsourceid><addsrcrecordid>eNpt0LFOwzAQgGELgWgpDLwA6oKAIXC249geUQUFqcBS5shxztAqcYqdDH17UrW0C5Nv-HRn_YRcUrinwOiDrzTwTMP6iAyp4JBkWrPj_azSATmLcQkAmgs4JQMGwIFrMSS3886bosLxu_FNtKafpsGsvtHj-M18eWybGlsM8ZycOFNFvNi9I_L5_DSfvCSzj-nr5HGWGJ6mbSKtcabUZcZKAcBQ9T8BycCmrrBOWqmolooZ56wsNKaaKiF4qgSXUrMS-YjcbPeuQvPTYWzzehEtVpXx2HQxl5xnlCqgvbzbShuaGAO6fBUWtQnrnEK-6ZLvu_T2are1K2os9_IvRA-ud8BsKrhgvF3Eg2NcKi2zgzM25sumC76P8c_BX_SwdJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733611801</pqid></control><display><type>article</type><title>Tunable Nanoscale Graphene Magnetometers</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Pisana, Simone ; Braganca, Patrick M ; Marinero, Ernesto E ; Gurney, Bruce A</creator><creatorcontrib>Pisana, Simone ; Braganca, Patrick M ; Marinero, Ernesto E ; Gurney, Bruce A</creatorcontrib><description>The detection of magnetic fields with nanoscale resolution is a fundamental challenge for scanning probe magnetometry, biosensing, and magnetic storage. Current technologies based on giant magnetoresistance and tunneling magnetoresistance are limited at small sizes by thermal magnetic noise and spin-torque instability. These limitations do not affect Hall sensors consisting of high mobility semiconductors or metal thin films, but the loss of magnetic flux throughout the sensor’s thickness greatly limits spatial resolution and sensitivity. Here we demonstrate graphene extraordinary magnetoresistance devices that combine the Hall effect and enhanced geometric magnetoresistance, yielding sensitivities rivaling that of state of the art sensors but do so with subnanometer sense layer thickness at the sensor surface. Back-gating provides the ability to control sensor characteristics, which can mitigate both inherent variations in material properties and fabrication-induced device-to-device variability that is unavoidable at the nanoscale.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl903690y</identifier><identifier>PMID: 20030395</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biosensing Techniques - instrumentation ; Carbon - chemistry ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Equipment Design ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Magnetics - instrumentation ; Manufactured Materials ; Materials science ; Materials Testing ; Microscopy, Atomic Force ; Nanostructures ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Physics ; Pressure ; Semiconductors ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Specific materials ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Temperature ; Transducers</subject><ispartof>Nano letters, 2010-01, Vol.10 (1), p.341-346</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a344t-7cafad9d62d5002e89920720c4fbcf7c7819782affc7b9e491855348537792de3</citedby><cites>FETCH-LOGICAL-a344t-7cafad9d62d5002e89920720c4fbcf7c7819782affc7b9e491855348537792de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl903690y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl903690y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22378976$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20030395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pisana, Simone</creatorcontrib><creatorcontrib>Braganca, Patrick M</creatorcontrib><creatorcontrib>Marinero, Ernesto E</creatorcontrib><creatorcontrib>Gurney, Bruce A</creatorcontrib><title>Tunable Nanoscale Graphene Magnetometers</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The detection of magnetic fields with nanoscale resolution is a fundamental challenge for scanning probe magnetometry, biosensing, and magnetic storage. Current technologies based on giant magnetoresistance and tunneling magnetoresistance are limited at small sizes by thermal magnetic noise and spin-torque instability. These limitations do not affect Hall sensors consisting of high mobility semiconductors or metal thin films, but the loss of magnetic flux throughout the sensor’s thickness greatly limits spatial resolution and sensitivity. Here we demonstrate graphene extraordinary magnetoresistance devices that combine the Hall effect and enhanced geometric magnetoresistance, yielding sensitivities rivaling that of state of the art sensors but do so with subnanometer sense layer thickness at the sensor surface. Back-gating provides the ability to control sensor characteristics, which can mitigate both inherent variations in material properties and fabrication-induced device-to-device variability that is unavoidable at the nanoscale.</description><subject>Biosensing Techniques - instrumentation</subject><subject>Carbon - chemistry</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Magnetics - instrumentation</subject><subject>Manufactured Materials</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Microscopy, Atomic Force</subject><subject>Nanostructures</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Physics</subject><subject>Pressure</subject><subject>Semiconductors</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Specific materials</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Temperature</subject><subject>Transducers</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0LFOwzAQgGELgWgpDLwA6oKAIXC249geUQUFqcBS5shxztAqcYqdDH17UrW0C5Nv-HRn_YRcUrinwOiDrzTwTMP6iAyp4JBkWrPj_azSATmLcQkAmgs4JQMGwIFrMSS3886bosLxu_FNtKafpsGsvtHj-M18eWybGlsM8ZycOFNFvNi9I_L5_DSfvCSzj-nr5HGWGJ6mbSKtcabUZcZKAcBQ9T8BycCmrrBOWqmolooZ56wsNKaaKiF4qgSXUrMS-YjcbPeuQvPTYWzzehEtVpXx2HQxl5xnlCqgvbzbShuaGAO6fBUWtQnrnEK-6ZLvu_T2are1K2os9_IvRA-ud8BsKrhgvF3Eg2NcKi2zgzM25sumC76P8c_BX_SwdJs</recordid><startdate>20100113</startdate><enddate>20100113</enddate><creator>Pisana, Simone</creator><creator>Braganca, Patrick M</creator><creator>Marinero, Ernesto E</creator><creator>Gurney, Bruce A</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100113</creationdate><title>Tunable Nanoscale Graphene Magnetometers</title><author>Pisana, Simone ; Braganca, Patrick M ; Marinero, Ernesto E ; Gurney, Bruce A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-7cafad9d62d5002e89920720c4fbcf7c7819782affc7b9e491855348537792de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biosensing Techniques - instrumentation</topic><topic>Carbon - chemistry</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Magnetics - instrumentation</topic><topic>Manufactured Materials</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Microscopy, Atomic Force</topic><topic>Nanostructures</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Physics</topic><topic>Pressure</topic><topic>Semiconductors</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Specific materials</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Temperature</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pisana, Simone</creatorcontrib><creatorcontrib>Braganca, Patrick M</creatorcontrib><creatorcontrib>Marinero, Ernesto E</creatorcontrib><creatorcontrib>Gurney, Bruce A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pisana, Simone</au><au>Braganca, Patrick M</au><au>Marinero, Ernesto E</au><au>Gurney, Bruce A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable Nanoscale Graphene Magnetometers</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-01-13</date><risdate>2010</risdate><volume>10</volume><issue>1</issue><spage>341</spage><epage>346</epage><pages>341-346</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The detection of magnetic fields with nanoscale resolution is a fundamental challenge for scanning probe magnetometry, biosensing, and magnetic storage. Current technologies based on giant magnetoresistance and tunneling magnetoresistance are limited at small sizes by thermal magnetic noise and spin-torque instability. These limitations do not affect Hall sensors consisting of high mobility semiconductors or metal thin films, but the loss of magnetic flux throughout the sensor’s thickness greatly limits spatial resolution and sensitivity. Here we demonstrate graphene extraordinary magnetoresistance devices that combine the Hall effect and enhanced geometric magnetoresistance, yielding sensitivities rivaling that of state of the art sensors but do so with subnanometer sense layer thickness at the sensor surface. Back-gating provides the ability to control sensor characteristics, which can mitigate both inherent variations in material properties and fabrication-induced device-to-device variability that is unavoidable at the nanoscale.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20030395</pmid><doi>10.1021/nl903690y</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2010-01, Vol.10 (1), p.341-346
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_733611801
source MEDLINE; American Chemical Society Journals
subjects Biosensing Techniques - instrumentation
Carbon - chemistry
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Electronics
Equipment Design
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Magnetics - instrumentation
Manufactured Materials
Materials science
Materials Testing
Microscopy, Atomic Force
Nanostructures
Nanotechnology - instrumentation
Nanotechnology - methods
Physics
Pressure
Semiconductors
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
Specific materials
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Temperature
Transducers
title Tunable Nanoscale Graphene Magnetometers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20Nanoscale%20Graphene%20Magnetometers&rft.jtitle=Nano%20letters&rft.au=Pisana,%20Simone&rft.date=2010-01-13&rft.volume=10&rft.issue=1&rft.spage=341&rft.epage=346&rft.pages=341-346&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl903690y&rft_dat=%3Cproquest_cross%3E733611801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733611801&rft_id=info:pmid/20030395&rfr_iscdi=true