Tunable Nanoscale Graphene Magnetometers
The detection of magnetic fields with nanoscale resolution is a fundamental challenge for scanning probe magnetometry, biosensing, and magnetic storage. Current technologies based on giant magnetoresistance and tunneling magnetoresistance are limited at small sizes by thermal magnetic noise and spin...
Gespeichert in:
Veröffentlicht in: | Nano letters 2010-01, Vol.10 (1), p.341-346 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 346 |
---|---|
container_issue | 1 |
container_start_page | 341 |
container_title | Nano letters |
container_volume | 10 |
creator | Pisana, Simone Braganca, Patrick M Marinero, Ernesto E Gurney, Bruce A |
description | The detection of magnetic fields with nanoscale resolution is a fundamental challenge for scanning probe magnetometry, biosensing, and magnetic storage. Current technologies based on giant magnetoresistance and tunneling magnetoresistance are limited at small sizes by thermal magnetic noise and spin-torque instability. These limitations do not affect Hall sensors consisting of high mobility semiconductors or metal thin films, but the loss of magnetic flux throughout the sensor’s thickness greatly limits spatial resolution and sensitivity. Here we demonstrate graphene extraordinary magnetoresistance devices that combine the Hall effect and enhanced geometric magnetoresistance, yielding sensitivities rivaling that of state of the art sensors but do so with subnanometer sense layer thickness at the sensor surface. Back-gating provides the ability to control sensor characteristics, which can mitigate both inherent variations in material properties and fabrication-induced device-to-device variability that is unavoidable at the nanoscale. |
doi_str_mv | 10.1021/nl903690y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733611801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733611801</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-7cafad9d62d5002e89920720c4fbcf7c7819782affc7b9e491855348537792de3</originalsourceid><addsrcrecordid>eNpt0LFOwzAQgGELgWgpDLwA6oKAIXC249geUQUFqcBS5shxztAqcYqdDH17UrW0C5Nv-HRn_YRcUrinwOiDrzTwTMP6iAyp4JBkWrPj_azSATmLcQkAmgs4JQMGwIFrMSS3886bosLxu_FNtKafpsGsvtHj-M18eWybGlsM8ZycOFNFvNi9I_L5_DSfvCSzj-nr5HGWGJ6mbSKtcabUZcZKAcBQ9T8BycCmrrBOWqmolooZ56wsNKaaKiF4qgSXUrMS-YjcbPeuQvPTYWzzehEtVpXx2HQxl5xnlCqgvbzbShuaGAO6fBUWtQnrnEK-6ZLvu_T2are1K2os9_IvRA-ud8BsKrhgvF3Eg2NcKi2zgzM25sumC76P8c_BX_SwdJs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733611801</pqid></control><display><type>article</type><title>Tunable Nanoscale Graphene Magnetometers</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Pisana, Simone ; Braganca, Patrick M ; Marinero, Ernesto E ; Gurney, Bruce A</creator><creatorcontrib>Pisana, Simone ; Braganca, Patrick M ; Marinero, Ernesto E ; Gurney, Bruce A</creatorcontrib><description>The detection of magnetic fields with nanoscale resolution is a fundamental challenge for scanning probe magnetometry, biosensing, and magnetic storage. Current technologies based on giant magnetoresistance and tunneling magnetoresistance are limited at small sizes by thermal magnetic noise and spin-torque instability. These limitations do not affect Hall sensors consisting of high mobility semiconductors or metal thin films, but the loss of magnetic flux throughout the sensor’s thickness greatly limits spatial resolution and sensitivity. Here we demonstrate graphene extraordinary magnetoresistance devices that combine the Hall effect and enhanced geometric magnetoresistance, yielding sensitivities rivaling that of state of the art sensors but do so with subnanometer sense layer thickness at the sensor surface. Back-gating provides the ability to control sensor characteristics, which can mitigate both inherent variations in material properties and fabrication-induced device-to-device variability that is unavoidable at the nanoscale.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl903690y</identifier><identifier>PMID: 20030395</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biosensing Techniques - instrumentation ; Carbon - chemistry ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electronics ; Equipment Design ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Magnetics - instrumentation ; Manufactured Materials ; Materials science ; Materials Testing ; Microscopy, Atomic Force ; Nanostructures ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Physics ; Pressure ; Semiconductors ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Specific materials ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Temperature ; Transducers</subject><ispartof>Nano letters, 2010-01, Vol.10 (1), p.341-346</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a344t-7cafad9d62d5002e89920720c4fbcf7c7819782affc7b9e491855348537792de3</citedby><cites>FETCH-LOGICAL-a344t-7cafad9d62d5002e89920720c4fbcf7c7819782affc7b9e491855348537792de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl903690y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl903690y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22378976$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20030395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pisana, Simone</creatorcontrib><creatorcontrib>Braganca, Patrick M</creatorcontrib><creatorcontrib>Marinero, Ernesto E</creatorcontrib><creatorcontrib>Gurney, Bruce A</creatorcontrib><title>Tunable Nanoscale Graphene Magnetometers</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>The detection of magnetic fields with nanoscale resolution is a fundamental challenge for scanning probe magnetometry, biosensing, and magnetic storage. Current technologies based on giant magnetoresistance and tunneling magnetoresistance are limited at small sizes by thermal magnetic noise and spin-torque instability. These limitations do not affect Hall sensors consisting of high mobility semiconductors or metal thin films, but the loss of magnetic flux throughout the sensor’s thickness greatly limits spatial resolution and sensitivity. Here we demonstrate graphene extraordinary magnetoresistance devices that combine the Hall effect and enhanced geometric magnetoresistance, yielding sensitivities rivaling that of state of the art sensors but do so with subnanometer sense layer thickness at the sensor surface. Back-gating provides the ability to control sensor characteristics, which can mitigate both inherent variations in material properties and fabrication-induced device-to-device variability that is unavoidable at the nanoscale.</description><subject>Biosensing Techniques - instrumentation</subject><subject>Carbon - chemistry</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electronics</subject><subject>Equipment Design</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Magnetics - instrumentation</subject><subject>Manufactured Materials</subject><subject>Materials science</subject><subject>Materials Testing</subject><subject>Microscopy, Atomic Force</subject><subject>Nanostructures</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Physics</subject><subject>Pressure</subject><subject>Semiconductors</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Specific materials</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Temperature</subject><subject>Transducers</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0LFOwzAQgGELgWgpDLwA6oKAIXC249geUQUFqcBS5shxztAqcYqdDH17UrW0C5Nv-HRn_YRcUrinwOiDrzTwTMP6iAyp4JBkWrPj_azSATmLcQkAmgs4JQMGwIFrMSS3886bosLxu_FNtKafpsGsvtHj-M18eWybGlsM8ZycOFNFvNi9I_L5_DSfvCSzj-nr5HGWGJ6mbSKtcabUZcZKAcBQ9T8BycCmrrBOWqmolooZ56wsNKaaKiF4qgSXUrMS-YjcbPeuQvPTYWzzehEtVpXx2HQxl5xnlCqgvbzbShuaGAO6fBUWtQnrnEK-6ZLvu_T2are1K2os9_IvRA-ud8BsKrhgvF3Eg2NcKi2zgzM25sumC76P8c_BX_SwdJs</recordid><startdate>20100113</startdate><enddate>20100113</enddate><creator>Pisana, Simone</creator><creator>Braganca, Patrick M</creator><creator>Marinero, Ernesto E</creator><creator>Gurney, Bruce A</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100113</creationdate><title>Tunable Nanoscale Graphene Magnetometers</title><author>Pisana, Simone ; Braganca, Patrick M ; Marinero, Ernesto E ; Gurney, Bruce A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-7cafad9d62d5002e89920720c4fbcf7c7819782affc7b9e491855348537792de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biosensing Techniques - instrumentation</topic><topic>Carbon - chemistry</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electronics</topic><topic>Equipment Design</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Magnetics - instrumentation</topic><topic>Manufactured Materials</topic><topic>Materials science</topic><topic>Materials Testing</topic><topic>Microscopy, Atomic Force</topic><topic>Nanostructures</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Physics</topic><topic>Pressure</topic><topic>Semiconductors</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Specific materials</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Temperature</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pisana, Simone</creatorcontrib><creatorcontrib>Braganca, Patrick M</creatorcontrib><creatorcontrib>Marinero, Ernesto E</creatorcontrib><creatorcontrib>Gurney, Bruce A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pisana, Simone</au><au>Braganca, Patrick M</au><au>Marinero, Ernesto E</au><au>Gurney, Bruce A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable Nanoscale Graphene Magnetometers</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-01-13</date><risdate>2010</risdate><volume>10</volume><issue>1</issue><spage>341</spage><epage>346</epage><pages>341-346</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>The detection of magnetic fields with nanoscale resolution is a fundamental challenge for scanning probe magnetometry, biosensing, and magnetic storage. Current technologies based on giant magnetoresistance and tunneling magnetoresistance are limited at small sizes by thermal magnetic noise and spin-torque instability. These limitations do not affect Hall sensors consisting of high mobility semiconductors or metal thin films, but the loss of magnetic flux throughout the sensor’s thickness greatly limits spatial resolution and sensitivity. Here we demonstrate graphene extraordinary magnetoresistance devices that combine the Hall effect and enhanced geometric magnetoresistance, yielding sensitivities rivaling that of state of the art sensors but do so with subnanometer sense layer thickness at the sensor surface. Back-gating provides the ability to control sensor characteristics, which can mitigate both inherent variations in material properties and fabrication-induced device-to-device variability that is unavoidable at the nanoscale.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20030395</pmid><doi>10.1021/nl903690y</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2010-01, Vol.10 (1), p.341-346 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_733611801 |
source | MEDLINE; American Chemical Society Journals |
subjects | Biosensing Techniques - instrumentation Carbon - chemistry Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Electronics Equipment Design Exact sciences and technology Fullerenes and related materials diamonds, graphite General equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Magnetics - instrumentation Manufactured Materials Materials science Materials Testing Microscopy, Atomic Force Nanostructures Nanotechnology - instrumentation Nanotechnology - methods Physics Pressure Semiconductors Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing Specific materials Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Temperature Transducers |
title | Tunable Nanoscale Graphene Magnetometers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A09%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20Nanoscale%20Graphene%20Magnetometers&rft.jtitle=Nano%20letters&rft.au=Pisana,%20Simone&rft.date=2010-01-13&rft.volume=10&rft.issue=1&rft.spage=341&rft.epage=346&rft.pages=341-346&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl903690y&rft_dat=%3Cproquest_cross%3E733611801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733611801&rft_id=info:pmid/20030395&rfr_iscdi=true |