Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure

Aims Impairment in mitochondrial energetics is a common observation in animal models of heart failure, the underlying mechanisms of which remain incompletely understood. It was our objective to investigate whether changes in mitochondrial protein levels may explain impairment in mitochondrial oxidat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cardiovascular research 2010-01, Vol.85 (2), p.376-384
Hauptverfasser: Bugger, Heiko, Schwarzer, Michael, Chen, Dong, Schrepper, Andrea, Amorim, Paulo A., Schoepe, Maria, Nguyen, T. Dung, Mohr, Friedrich W., Khalimonchuk, Oleh, Weimer, Bart C., Doenst, Torsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 384
container_issue 2
container_start_page 376
container_title Cardiovascular research
container_volume 85
creator Bugger, Heiko
Schwarzer, Michael
Chen, Dong
Schrepper, Andrea
Amorim, Paulo A.
Schoepe, Maria
Nguyen, T. Dung
Mohr, Friedrich W.
Khalimonchuk, Oleh
Weimer, Bart C.
Doenst, Torsten
description Aims Impairment in mitochondrial energetics is a common observation in animal models of heart failure, the underlying mechanisms of which remain incompletely understood. It was our objective to investigate whether changes in mitochondrial protein levels may explain impairment in mitochondrial oxidative capacity in pressure overload-induced heart failure. Methods and results Twenty weeks following aortic constriction, Sprague-Dawley rats developed contractile dysfunction with clinical signs of heart failure. Comparative mitochondrial proteomics using label-free proteome expression analysis (LC-MS/MS) revealed decreased mitochondrial abundance of fatty acid oxidation proteins (six of 11 proteins detected), increased levels of pyruvate dehydrogenase subunits, and upregulation of two tricarboxylic acid cycle proteins. Regulation of mitochondrial electron transport chain subunits was variable, with downregulation of 53% of proteins and upregulation of 25% of proteins. Mitochondrial state 3 respiration was markedly decreased independent of the substrate used (palmitoyl-carnitine −65%, pyruvate −75%, glutamate −75%, dinitrophenol −82%; all P < 0.05), associated with impaired mitochondrial cristae morphology in failing hearts. Perfusion of isolated working failing hearts showed markedly reduced oleate (−68%; P < 0.05) and glucose oxidation (−64%; P < 0.05). Conclusion Pressure overload-induced heart failure is characterized by a substantial defect in cardiac oxidative capacity, at least in part due to a mitochondrial defect downstream of substrate-specific pathways. Numerous changes in mitochondrial protein levels have been detected, and the contribution of these to oxidative defects and impaired cardiac energetics in failing hearts is discussed.
doi_str_mv 10.1093/cvr/cvp344
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733609334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cvr/cvp344</oup_id><sourcerecordid>733609334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-17003a745b7f20e7e0001f02e04374b4fffab2472ed36b835a5cf3f51a298f993</originalsourceid><addsrcrecordid>eNp90EtrFTEYBuAgFnta3fgDJBsRCmNzncwsbb1UaL2AgnQTMskXT3RmMiYzp-2_N3qGunMRQsjDd3kRekrJS0pafmp3qZyJC_EAbaiSsuJMyIdoQwhpqprX_BAd5fyjPKVU4hE6pG0juKRig9ynFGeIQ7A4wRAd9H0Yv-Po8RDmaLdxdCmYHsfb4MwcdoAnM29vzF3GYcRTgpyXBDjuIPXRuCqMbrHg8BZMmrE3oS_fj9GBN32GJ-t9jL6-ffPl_KK6_Pju_fmry8ryRswVVYRwo4TslGcEFJSBqScMiOBKdMJ7bzomFAPH667h0kjruZfUsLbxbcuP0Yt93SnFXwvkWQ8h27KSGSEuWSvO6xIYF0We7KVNMecEXk8pDCbdaUr0n1B1CVXvQy342Vp26QZw_-iaYgHPV2CyNb1PZrQh3zvGmJLN3_lWF5fp_w2rvQt5htt7adJPXSuupL74dq1fX31uzj5cS035b_IHnew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733609334</pqid></control><display><type>article</type><title>Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Bugger, Heiko ; Schwarzer, Michael ; Chen, Dong ; Schrepper, Andrea ; Amorim, Paulo A. ; Schoepe, Maria ; Nguyen, T. Dung ; Mohr, Friedrich W. ; Khalimonchuk, Oleh ; Weimer, Bart C. ; Doenst, Torsten</creator><creatorcontrib>Bugger, Heiko ; Schwarzer, Michael ; Chen, Dong ; Schrepper, Andrea ; Amorim, Paulo A. ; Schoepe, Maria ; Nguyen, T. Dung ; Mohr, Friedrich W. ; Khalimonchuk, Oleh ; Weimer, Bart C. ; Doenst, Torsten</creatorcontrib><description>Aims Impairment in mitochondrial energetics is a common observation in animal models of heart failure, the underlying mechanisms of which remain incompletely understood. It was our objective to investigate whether changes in mitochondrial protein levels may explain impairment in mitochondrial oxidative capacity in pressure overload-induced heart failure. Methods and results Twenty weeks following aortic constriction, Sprague-Dawley rats developed contractile dysfunction with clinical signs of heart failure. Comparative mitochondrial proteomics using label-free proteome expression analysis (LC-MS/MS) revealed decreased mitochondrial abundance of fatty acid oxidation proteins (six of 11 proteins detected), increased levels of pyruvate dehydrogenase subunits, and upregulation of two tricarboxylic acid cycle proteins. Regulation of mitochondrial electron transport chain subunits was variable, with downregulation of 53% of proteins and upregulation of 25% of proteins. Mitochondrial state 3 respiration was markedly decreased independent of the substrate used (palmitoyl-carnitine −65%, pyruvate −75%, glutamate −75%, dinitrophenol −82%; all P &lt; 0.05), associated with impaired mitochondrial cristae morphology in failing hearts. Perfusion of isolated working failing hearts showed markedly reduced oleate (−68%; P &lt; 0.05) and glucose oxidation (−64%; P &lt; 0.05). Conclusion Pressure overload-induced heart failure is characterized by a substantial defect in cardiac oxidative capacity, at least in part due to a mitochondrial defect downstream of substrate-specific pathways. Numerous changes in mitochondrial protein levels have been detected, and the contribution of these to oxidative defects and impaired cardiac energetics in failing hearts is discussed.</description><identifier>ISSN: 0008-6363</identifier><identifier>EISSN: 1755-3245</identifier><identifier>DOI: 10.1093/cvr/cvp344</identifier><identifier>PMID: 19843514</identifier><identifier>CODEN: CVREAU</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Animals ; Aorta - physiology ; Biological and medical sciences ; Cardiology. Vascular system ; Chronic heart failure ; Electron Transport ; Fatty Acids - metabolism ; Heart ; Heart Failure - etiology ; Heart Failure - metabolism ; Heart failure, cardiogenic pulmonary edema, cardiac enlargement ; Medical sciences ; Metabolism ; Mitochondria ; Mitochondria - metabolism ; Myocardium - metabolism ; Myocardium - ultrastructure ; Oxidation-Reduction ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Pressure overload ; Proteomic remodelling ; Proteomics ; Rats ; Rats, Sprague-Dawley ; RNA-Binding Proteins - physiology ; Transcription Factors - physiology ; Vasoconstriction</subject><ispartof>Cardiovascular research, 2010-01, Vol.85 (2), p.376-384</ispartof><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2009. For permissions please email: journals.permissions@oxfordjournals.org. 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-17003a745b7f20e7e0001f02e04374b4fffab2472ed36b835a5cf3f51a298f993</citedby><cites>FETCH-LOGICAL-c384t-17003a745b7f20e7e0001f02e04374b4fffab2472ed36b835a5cf3f51a298f993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22275899$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19843514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bugger, Heiko</creatorcontrib><creatorcontrib>Schwarzer, Michael</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Schrepper, Andrea</creatorcontrib><creatorcontrib>Amorim, Paulo A.</creatorcontrib><creatorcontrib>Schoepe, Maria</creatorcontrib><creatorcontrib>Nguyen, T. Dung</creatorcontrib><creatorcontrib>Mohr, Friedrich W.</creatorcontrib><creatorcontrib>Khalimonchuk, Oleh</creatorcontrib><creatorcontrib>Weimer, Bart C.</creatorcontrib><creatorcontrib>Doenst, Torsten</creatorcontrib><title>Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure</title><title>Cardiovascular research</title><addtitle>Cardiovasc Res</addtitle><description>Aims Impairment in mitochondrial energetics is a common observation in animal models of heart failure, the underlying mechanisms of which remain incompletely understood. It was our objective to investigate whether changes in mitochondrial protein levels may explain impairment in mitochondrial oxidative capacity in pressure overload-induced heart failure. Methods and results Twenty weeks following aortic constriction, Sprague-Dawley rats developed contractile dysfunction with clinical signs of heart failure. Comparative mitochondrial proteomics using label-free proteome expression analysis (LC-MS/MS) revealed decreased mitochondrial abundance of fatty acid oxidation proteins (six of 11 proteins detected), increased levels of pyruvate dehydrogenase subunits, and upregulation of two tricarboxylic acid cycle proteins. Regulation of mitochondrial electron transport chain subunits was variable, with downregulation of 53% of proteins and upregulation of 25% of proteins. Mitochondrial state 3 respiration was markedly decreased independent of the substrate used (palmitoyl-carnitine −65%, pyruvate −75%, glutamate −75%, dinitrophenol −82%; all P &lt; 0.05), associated with impaired mitochondrial cristae morphology in failing hearts. Perfusion of isolated working failing hearts showed markedly reduced oleate (−68%; P &lt; 0.05) and glucose oxidation (−64%; P &lt; 0.05). Conclusion Pressure overload-induced heart failure is characterized by a substantial defect in cardiac oxidative capacity, at least in part due to a mitochondrial defect downstream of substrate-specific pathways. Numerous changes in mitochondrial protein levels have been detected, and the contribution of these to oxidative defects and impaired cardiac energetics in failing hearts is discussed.</description><subject>Animals</subject><subject>Aorta - physiology</subject><subject>Biological and medical sciences</subject><subject>Cardiology. Vascular system</subject><subject>Chronic heart failure</subject><subject>Electron Transport</subject><subject>Fatty Acids - metabolism</subject><subject>Heart</subject><subject>Heart Failure - etiology</subject><subject>Heart Failure - metabolism</subject><subject>Heart failure, cardiogenic pulmonary edema, cardiac enlargement</subject><subject>Medical sciences</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - ultrastructure</subject><subject>Oxidation-Reduction</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>Pressure overload</subject><subject>Proteomic remodelling</subject><subject>Proteomics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA-Binding Proteins - physiology</subject><subject>Transcription Factors - physiology</subject><subject>Vasoconstriction</subject><issn>0008-6363</issn><issn>1755-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90EtrFTEYBuAgFnta3fgDJBsRCmNzncwsbb1UaL2AgnQTMskXT3RmMiYzp-2_N3qGunMRQsjDd3kRekrJS0pafmp3qZyJC_EAbaiSsuJMyIdoQwhpqprX_BAd5fyjPKVU4hE6pG0juKRig9ynFGeIQ7A4wRAd9H0Yv-Po8RDmaLdxdCmYHsfb4MwcdoAnM29vzF3GYcRTgpyXBDjuIPXRuCqMbrHg8BZMmrE3oS_fj9GBN32GJ-t9jL6-ffPl_KK6_Pju_fmry8ryRswVVYRwo4TslGcEFJSBqScMiOBKdMJ7bzomFAPH667h0kjruZfUsLbxbcuP0Yt93SnFXwvkWQ8h27KSGSEuWSvO6xIYF0We7KVNMecEXk8pDCbdaUr0n1B1CVXvQy342Vp26QZw_-iaYgHPV2CyNb1PZrQh3zvGmJLN3_lWF5fp_w2rvQt5htt7adJPXSuupL74dq1fX31uzj5cS035b_IHnew</recordid><startdate>20100115</startdate><enddate>20100115</enddate><creator>Bugger, Heiko</creator><creator>Schwarzer, Michael</creator><creator>Chen, Dong</creator><creator>Schrepper, Andrea</creator><creator>Amorim, Paulo A.</creator><creator>Schoepe, Maria</creator><creator>Nguyen, T. Dung</creator><creator>Mohr, Friedrich W.</creator><creator>Khalimonchuk, Oleh</creator><creator>Weimer, Bart C.</creator><creator>Doenst, Torsten</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100115</creationdate><title>Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure</title><author>Bugger, Heiko ; Schwarzer, Michael ; Chen, Dong ; Schrepper, Andrea ; Amorim, Paulo A. ; Schoepe, Maria ; Nguyen, T. Dung ; Mohr, Friedrich W. ; Khalimonchuk, Oleh ; Weimer, Bart C. ; Doenst, Torsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-17003a745b7f20e7e0001f02e04374b4fffab2472ed36b835a5cf3f51a298f993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Aorta - physiology</topic><topic>Biological and medical sciences</topic><topic>Cardiology. Vascular system</topic><topic>Chronic heart failure</topic><topic>Electron Transport</topic><topic>Fatty Acids - metabolism</topic><topic>Heart</topic><topic>Heart Failure - etiology</topic><topic>Heart Failure - metabolism</topic><topic>Heart failure, cardiogenic pulmonary edema, cardiac enlargement</topic><topic>Medical sciences</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - ultrastructure</topic><topic>Oxidation-Reduction</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>Pressure overload</topic><topic>Proteomic remodelling</topic><topic>Proteomics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA-Binding Proteins - physiology</topic><topic>Transcription Factors - physiology</topic><topic>Vasoconstriction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bugger, Heiko</creatorcontrib><creatorcontrib>Schwarzer, Michael</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Schrepper, Andrea</creatorcontrib><creatorcontrib>Amorim, Paulo A.</creatorcontrib><creatorcontrib>Schoepe, Maria</creatorcontrib><creatorcontrib>Nguyen, T. Dung</creatorcontrib><creatorcontrib>Mohr, Friedrich W.</creatorcontrib><creatorcontrib>Khalimonchuk, Oleh</creatorcontrib><creatorcontrib>Weimer, Bart C.</creatorcontrib><creatorcontrib>Doenst, Torsten</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cardiovascular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bugger, Heiko</au><au>Schwarzer, Michael</au><au>Chen, Dong</au><au>Schrepper, Andrea</au><au>Amorim, Paulo A.</au><au>Schoepe, Maria</au><au>Nguyen, T. Dung</au><au>Mohr, Friedrich W.</au><au>Khalimonchuk, Oleh</au><au>Weimer, Bart C.</au><au>Doenst, Torsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure</atitle><jtitle>Cardiovascular research</jtitle><addtitle>Cardiovasc Res</addtitle><date>2010-01-15</date><risdate>2010</risdate><volume>85</volume><issue>2</issue><spage>376</spage><epage>384</epage><pages>376-384</pages><issn>0008-6363</issn><eissn>1755-3245</eissn><coden>CVREAU</coden><abstract>Aims Impairment in mitochondrial energetics is a common observation in animal models of heart failure, the underlying mechanisms of which remain incompletely understood. It was our objective to investigate whether changes in mitochondrial protein levels may explain impairment in mitochondrial oxidative capacity in pressure overload-induced heart failure. Methods and results Twenty weeks following aortic constriction, Sprague-Dawley rats developed contractile dysfunction with clinical signs of heart failure. Comparative mitochondrial proteomics using label-free proteome expression analysis (LC-MS/MS) revealed decreased mitochondrial abundance of fatty acid oxidation proteins (six of 11 proteins detected), increased levels of pyruvate dehydrogenase subunits, and upregulation of two tricarboxylic acid cycle proteins. Regulation of mitochondrial electron transport chain subunits was variable, with downregulation of 53% of proteins and upregulation of 25% of proteins. Mitochondrial state 3 respiration was markedly decreased independent of the substrate used (palmitoyl-carnitine −65%, pyruvate −75%, glutamate −75%, dinitrophenol −82%; all P &lt; 0.05), associated with impaired mitochondrial cristae morphology in failing hearts. Perfusion of isolated working failing hearts showed markedly reduced oleate (−68%; P &lt; 0.05) and glucose oxidation (−64%; P &lt; 0.05). Conclusion Pressure overload-induced heart failure is characterized by a substantial defect in cardiac oxidative capacity, at least in part due to a mitochondrial defect downstream of substrate-specific pathways. Numerous changes in mitochondrial protein levels have been detected, and the contribution of these to oxidative defects and impaired cardiac energetics in failing hearts is discussed.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>19843514</pmid><doi>10.1093/cvr/cvp344</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6363
ispartof Cardiovascular research, 2010-01, Vol.85 (2), p.376-384
issn 0008-6363
1755-3245
language eng
recordid cdi_proquest_miscellaneous_733609334
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects Animals
Aorta - physiology
Biological and medical sciences
Cardiology. Vascular system
Chronic heart failure
Electron Transport
Fatty Acids - metabolism
Heart
Heart Failure - etiology
Heart Failure - metabolism
Heart failure, cardiogenic pulmonary edema, cardiac enlargement
Medical sciences
Metabolism
Mitochondria
Mitochondria - metabolism
Myocardium - metabolism
Myocardium - ultrastructure
Oxidation-Reduction
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
Pressure overload
Proteomic remodelling
Proteomics
Rats
Rats, Sprague-Dawley
RNA-Binding Proteins - physiology
Transcription Factors - physiology
Vasoconstriction
title Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomic%20remodelling%20of%20mitochondrial%20oxidative%20pathways%20in%20pressure%20overload-induced%20heart%20failure&rft.jtitle=Cardiovascular%20research&rft.au=Bugger,%20Heiko&rft.date=2010-01-15&rft.volume=85&rft.issue=2&rft.spage=376&rft.epage=384&rft.pages=376-384&rft.issn=0008-6363&rft.eissn=1755-3245&rft.coden=CVREAU&rft_id=info:doi/10.1093/cvr/cvp344&rft_dat=%3Cproquest_cross%3E733609334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733609334&rft_id=info:pmid/19843514&rft_oup_id=10.1093/cvr/cvp344&rfr_iscdi=true