Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure
Aims Impairment in mitochondrial energetics is a common observation in animal models of heart failure, the underlying mechanisms of which remain incompletely understood. It was our objective to investigate whether changes in mitochondrial protein levels may explain impairment in mitochondrial oxidat...
Gespeichert in:
Veröffentlicht in: | Cardiovascular research 2010-01, Vol.85 (2), p.376-384 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 384 |
---|---|
container_issue | 2 |
container_start_page | 376 |
container_title | Cardiovascular research |
container_volume | 85 |
creator | Bugger, Heiko Schwarzer, Michael Chen, Dong Schrepper, Andrea Amorim, Paulo A. Schoepe, Maria Nguyen, T. Dung Mohr, Friedrich W. Khalimonchuk, Oleh Weimer, Bart C. Doenst, Torsten |
description | Aims Impairment in mitochondrial energetics is a common observation in animal models of heart failure, the underlying mechanisms of which remain incompletely understood. It was our objective to investigate whether changes in mitochondrial protein levels may explain impairment in mitochondrial oxidative capacity in pressure overload-induced heart failure. Methods and results Twenty weeks following aortic constriction, Sprague-Dawley rats developed contractile dysfunction with clinical signs of heart failure. Comparative mitochondrial proteomics using label-free proteome expression analysis (LC-MS/MS) revealed decreased mitochondrial abundance of fatty acid oxidation proteins (six of 11 proteins detected), increased levels of pyruvate dehydrogenase subunits, and upregulation of two tricarboxylic acid cycle proteins. Regulation of mitochondrial electron transport chain subunits was variable, with downregulation of 53% of proteins and upregulation of 25% of proteins. Mitochondrial state 3 respiration was markedly decreased independent of the substrate used (palmitoyl-carnitine −65%, pyruvate −75%, glutamate −75%, dinitrophenol −82%; all P < 0.05), associated with impaired mitochondrial cristae morphology in failing hearts. Perfusion of isolated working failing hearts showed markedly reduced oleate (−68%; P < 0.05) and glucose oxidation (−64%; P < 0.05). Conclusion Pressure overload-induced heart failure is characterized by a substantial defect in cardiac oxidative capacity, at least in part due to a mitochondrial defect downstream of substrate-specific pathways. Numerous changes in mitochondrial protein levels have been detected, and the contribution of these to oxidative defects and impaired cardiac energetics in failing hearts is discussed. |
doi_str_mv | 10.1093/cvr/cvp344 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733609334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/cvr/cvp344</oup_id><sourcerecordid>733609334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-17003a745b7f20e7e0001f02e04374b4fffab2472ed36b835a5cf3f51a298f993</originalsourceid><addsrcrecordid>eNp90EtrFTEYBuAgFnta3fgDJBsRCmNzncwsbb1UaL2AgnQTMskXT3RmMiYzp-2_N3qGunMRQsjDd3kRekrJS0pafmp3qZyJC_EAbaiSsuJMyIdoQwhpqprX_BAd5fyjPKVU4hE6pG0juKRig9ynFGeIQ7A4wRAd9H0Yv-Po8RDmaLdxdCmYHsfb4MwcdoAnM29vzF3GYcRTgpyXBDjuIPXRuCqMbrHg8BZMmrE3oS_fj9GBN32GJ-t9jL6-ffPl_KK6_Pju_fmry8ryRswVVYRwo4TslGcEFJSBqScMiOBKdMJ7bzomFAPH667h0kjruZfUsLbxbcuP0Yt93SnFXwvkWQ8h27KSGSEuWSvO6xIYF0We7KVNMecEXk8pDCbdaUr0n1B1CVXvQy342Vp26QZw_-iaYgHPV2CyNb1PZrQh3zvGmJLN3_lWF5fp_w2rvQt5htt7adJPXSuupL74dq1fX31uzj5cS035b_IHnew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733609334</pqid></control><display><type>article</type><title>Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Bugger, Heiko ; Schwarzer, Michael ; Chen, Dong ; Schrepper, Andrea ; Amorim, Paulo A. ; Schoepe, Maria ; Nguyen, T. Dung ; Mohr, Friedrich W. ; Khalimonchuk, Oleh ; Weimer, Bart C. ; Doenst, Torsten</creator><creatorcontrib>Bugger, Heiko ; Schwarzer, Michael ; Chen, Dong ; Schrepper, Andrea ; Amorim, Paulo A. ; Schoepe, Maria ; Nguyen, T. Dung ; Mohr, Friedrich W. ; Khalimonchuk, Oleh ; Weimer, Bart C. ; Doenst, Torsten</creatorcontrib><description>Aims Impairment in mitochondrial energetics is a common observation in animal models of heart failure, the underlying mechanisms of which remain incompletely understood. It was our objective to investigate whether changes in mitochondrial protein levels may explain impairment in mitochondrial oxidative capacity in pressure overload-induced heart failure. Methods and results Twenty weeks following aortic constriction, Sprague-Dawley rats developed contractile dysfunction with clinical signs of heart failure. Comparative mitochondrial proteomics using label-free proteome expression analysis (LC-MS/MS) revealed decreased mitochondrial abundance of fatty acid oxidation proteins (six of 11 proteins detected), increased levels of pyruvate dehydrogenase subunits, and upregulation of two tricarboxylic acid cycle proteins. Regulation of mitochondrial electron transport chain subunits was variable, with downregulation of 53% of proteins and upregulation of 25% of proteins. Mitochondrial state 3 respiration was markedly decreased independent of the substrate used (palmitoyl-carnitine −65%, pyruvate −75%, glutamate −75%, dinitrophenol −82%; all P < 0.05), associated with impaired mitochondrial cristae morphology in failing hearts. Perfusion of isolated working failing hearts showed markedly reduced oleate (−68%; P < 0.05) and glucose oxidation (−64%; P < 0.05). Conclusion Pressure overload-induced heart failure is characterized by a substantial defect in cardiac oxidative capacity, at least in part due to a mitochondrial defect downstream of substrate-specific pathways. Numerous changes in mitochondrial protein levels have been detected, and the contribution of these to oxidative defects and impaired cardiac energetics in failing hearts is discussed.</description><identifier>ISSN: 0008-6363</identifier><identifier>EISSN: 1755-3245</identifier><identifier>DOI: 10.1093/cvr/cvp344</identifier><identifier>PMID: 19843514</identifier><identifier>CODEN: CVREAU</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Animals ; Aorta - physiology ; Biological and medical sciences ; Cardiology. Vascular system ; Chronic heart failure ; Electron Transport ; Fatty Acids - metabolism ; Heart ; Heart Failure - etiology ; Heart Failure - metabolism ; Heart failure, cardiogenic pulmonary edema, cardiac enlargement ; Medical sciences ; Metabolism ; Mitochondria ; Mitochondria - metabolism ; Myocardium - metabolism ; Myocardium - ultrastructure ; Oxidation-Reduction ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Pressure overload ; Proteomic remodelling ; Proteomics ; Rats ; Rats, Sprague-Dawley ; RNA-Binding Proteins - physiology ; Transcription Factors - physiology ; Vasoconstriction</subject><ispartof>Cardiovascular research, 2010-01, Vol.85 (2), p.376-384</ispartof><rights>Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2009. For permissions please email: journals.permissions@oxfordjournals.org. 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-17003a745b7f20e7e0001f02e04374b4fffab2472ed36b835a5cf3f51a298f993</citedby><cites>FETCH-LOGICAL-c384t-17003a745b7f20e7e0001f02e04374b4fffab2472ed36b835a5cf3f51a298f993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1584,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22275899$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19843514$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bugger, Heiko</creatorcontrib><creatorcontrib>Schwarzer, Michael</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Schrepper, Andrea</creatorcontrib><creatorcontrib>Amorim, Paulo A.</creatorcontrib><creatorcontrib>Schoepe, Maria</creatorcontrib><creatorcontrib>Nguyen, T. Dung</creatorcontrib><creatorcontrib>Mohr, Friedrich W.</creatorcontrib><creatorcontrib>Khalimonchuk, Oleh</creatorcontrib><creatorcontrib>Weimer, Bart C.</creatorcontrib><creatorcontrib>Doenst, Torsten</creatorcontrib><title>Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure</title><title>Cardiovascular research</title><addtitle>Cardiovasc Res</addtitle><description>Aims Impairment in mitochondrial energetics is a common observation in animal models of heart failure, the underlying mechanisms of which remain incompletely understood. It was our objective to investigate whether changes in mitochondrial protein levels may explain impairment in mitochondrial oxidative capacity in pressure overload-induced heart failure. Methods and results Twenty weeks following aortic constriction, Sprague-Dawley rats developed contractile dysfunction with clinical signs of heart failure. Comparative mitochondrial proteomics using label-free proteome expression analysis (LC-MS/MS) revealed decreased mitochondrial abundance of fatty acid oxidation proteins (six of 11 proteins detected), increased levels of pyruvate dehydrogenase subunits, and upregulation of two tricarboxylic acid cycle proteins. Regulation of mitochondrial electron transport chain subunits was variable, with downregulation of 53% of proteins and upregulation of 25% of proteins. Mitochondrial state 3 respiration was markedly decreased independent of the substrate used (palmitoyl-carnitine −65%, pyruvate −75%, glutamate −75%, dinitrophenol −82%; all P < 0.05), associated with impaired mitochondrial cristae morphology in failing hearts. Perfusion of isolated working failing hearts showed markedly reduced oleate (−68%; P < 0.05) and glucose oxidation (−64%; P < 0.05). Conclusion Pressure overload-induced heart failure is characterized by a substantial defect in cardiac oxidative capacity, at least in part due to a mitochondrial defect downstream of substrate-specific pathways. Numerous changes in mitochondrial protein levels have been detected, and the contribution of these to oxidative defects and impaired cardiac energetics in failing hearts is discussed.</description><subject>Animals</subject><subject>Aorta - physiology</subject><subject>Biological and medical sciences</subject><subject>Cardiology. Vascular system</subject><subject>Chronic heart failure</subject><subject>Electron Transport</subject><subject>Fatty Acids - metabolism</subject><subject>Heart</subject><subject>Heart Failure - etiology</subject><subject>Heart Failure - metabolism</subject><subject>Heart failure, cardiogenic pulmonary edema, cardiac enlargement</subject><subject>Medical sciences</subject><subject>Metabolism</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Myocardium - metabolism</subject><subject>Myocardium - ultrastructure</subject><subject>Oxidation-Reduction</subject><subject>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</subject><subject>Pressure overload</subject><subject>Proteomic remodelling</subject><subject>Proteomics</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA-Binding Proteins - physiology</subject><subject>Transcription Factors - physiology</subject><subject>Vasoconstriction</subject><issn>0008-6363</issn><issn>1755-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90EtrFTEYBuAgFnta3fgDJBsRCmNzncwsbb1UaL2AgnQTMskXT3RmMiYzp-2_N3qGunMRQsjDd3kRekrJS0pafmp3qZyJC_EAbaiSsuJMyIdoQwhpqprX_BAd5fyjPKVU4hE6pG0juKRig9ynFGeIQ7A4wRAd9H0Yv-Po8RDmaLdxdCmYHsfb4MwcdoAnM29vzF3GYcRTgpyXBDjuIPXRuCqMbrHg8BZMmrE3oS_fj9GBN32GJ-t9jL6-ffPl_KK6_Pju_fmry8ryRswVVYRwo4TslGcEFJSBqScMiOBKdMJ7bzomFAPH667h0kjruZfUsLbxbcuP0Yt93SnFXwvkWQ8h27KSGSEuWSvO6xIYF0We7KVNMecEXk8pDCbdaUr0n1B1CVXvQy342Vp26QZw_-iaYgHPV2CyNb1PZrQh3zvGmJLN3_lWF5fp_w2rvQt5htt7adJPXSuupL74dq1fX31uzj5cS035b_IHnew</recordid><startdate>20100115</startdate><enddate>20100115</enddate><creator>Bugger, Heiko</creator><creator>Schwarzer, Michael</creator><creator>Chen, Dong</creator><creator>Schrepper, Andrea</creator><creator>Amorim, Paulo A.</creator><creator>Schoepe, Maria</creator><creator>Nguyen, T. Dung</creator><creator>Mohr, Friedrich W.</creator><creator>Khalimonchuk, Oleh</creator><creator>Weimer, Bart C.</creator><creator>Doenst, Torsten</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100115</creationdate><title>Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure</title><author>Bugger, Heiko ; Schwarzer, Michael ; Chen, Dong ; Schrepper, Andrea ; Amorim, Paulo A. ; Schoepe, Maria ; Nguyen, T. Dung ; Mohr, Friedrich W. ; Khalimonchuk, Oleh ; Weimer, Bart C. ; Doenst, Torsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-17003a745b7f20e7e0001f02e04374b4fffab2472ed36b835a5cf3f51a298f993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Aorta - physiology</topic><topic>Biological and medical sciences</topic><topic>Cardiology. Vascular system</topic><topic>Chronic heart failure</topic><topic>Electron Transport</topic><topic>Fatty Acids - metabolism</topic><topic>Heart</topic><topic>Heart Failure - etiology</topic><topic>Heart Failure - metabolism</topic><topic>Heart failure, cardiogenic pulmonary edema, cardiac enlargement</topic><topic>Medical sciences</topic><topic>Metabolism</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Myocardium - metabolism</topic><topic>Myocardium - ultrastructure</topic><topic>Oxidation-Reduction</topic><topic>Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha</topic><topic>Pressure overload</topic><topic>Proteomic remodelling</topic><topic>Proteomics</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA-Binding Proteins - physiology</topic><topic>Transcription Factors - physiology</topic><topic>Vasoconstriction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bugger, Heiko</creatorcontrib><creatorcontrib>Schwarzer, Michael</creatorcontrib><creatorcontrib>Chen, Dong</creatorcontrib><creatorcontrib>Schrepper, Andrea</creatorcontrib><creatorcontrib>Amorim, Paulo A.</creatorcontrib><creatorcontrib>Schoepe, Maria</creatorcontrib><creatorcontrib>Nguyen, T. Dung</creatorcontrib><creatorcontrib>Mohr, Friedrich W.</creatorcontrib><creatorcontrib>Khalimonchuk, Oleh</creatorcontrib><creatorcontrib>Weimer, Bart C.</creatorcontrib><creatorcontrib>Doenst, Torsten</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Cardiovascular research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bugger, Heiko</au><au>Schwarzer, Michael</au><au>Chen, Dong</au><au>Schrepper, Andrea</au><au>Amorim, Paulo A.</au><au>Schoepe, Maria</au><au>Nguyen, T. Dung</au><au>Mohr, Friedrich W.</au><au>Khalimonchuk, Oleh</au><au>Weimer, Bart C.</au><au>Doenst, Torsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure</atitle><jtitle>Cardiovascular research</jtitle><addtitle>Cardiovasc Res</addtitle><date>2010-01-15</date><risdate>2010</risdate><volume>85</volume><issue>2</issue><spage>376</spage><epage>384</epage><pages>376-384</pages><issn>0008-6363</issn><eissn>1755-3245</eissn><coden>CVREAU</coden><abstract>Aims Impairment in mitochondrial energetics is a common observation in animal models of heart failure, the underlying mechanisms of which remain incompletely understood. It was our objective to investigate whether changes in mitochondrial protein levels may explain impairment in mitochondrial oxidative capacity in pressure overload-induced heart failure. Methods and results Twenty weeks following aortic constriction, Sprague-Dawley rats developed contractile dysfunction with clinical signs of heart failure. Comparative mitochondrial proteomics using label-free proteome expression analysis (LC-MS/MS) revealed decreased mitochondrial abundance of fatty acid oxidation proteins (six of 11 proteins detected), increased levels of pyruvate dehydrogenase subunits, and upregulation of two tricarboxylic acid cycle proteins. Regulation of mitochondrial electron transport chain subunits was variable, with downregulation of 53% of proteins and upregulation of 25% of proteins. Mitochondrial state 3 respiration was markedly decreased independent of the substrate used (palmitoyl-carnitine −65%, pyruvate −75%, glutamate −75%, dinitrophenol −82%; all P < 0.05), associated with impaired mitochondrial cristae morphology in failing hearts. Perfusion of isolated working failing hearts showed markedly reduced oleate (−68%; P < 0.05) and glucose oxidation (−64%; P < 0.05). Conclusion Pressure overload-induced heart failure is characterized by a substantial defect in cardiac oxidative capacity, at least in part due to a mitochondrial defect downstream of substrate-specific pathways. Numerous changes in mitochondrial protein levels have been detected, and the contribution of these to oxidative defects and impaired cardiac energetics in failing hearts is discussed.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>19843514</pmid><doi>10.1093/cvr/cvp344</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6363 |
ispartof | Cardiovascular research, 2010-01, Vol.85 (2), p.376-384 |
issn | 0008-6363 1755-3245 |
language | eng |
recordid | cdi_proquest_miscellaneous_733609334 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Animals Aorta - physiology Biological and medical sciences Cardiology. Vascular system Chronic heart failure Electron Transport Fatty Acids - metabolism Heart Heart Failure - etiology Heart Failure - metabolism Heart failure, cardiogenic pulmonary edema, cardiac enlargement Medical sciences Metabolism Mitochondria Mitochondria - metabolism Myocardium - metabolism Myocardium - ultrastructure Oxidation-Reduction Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha Pressure overload Proteomic remodelling Proteomics Rats Rats, Sprague-Dawley RNA-Binding Proteins - physiology Transcription Factors - physiology Vasoconstriction |
title | Proteomic remodelling of mitochondrial oxidative pathways in pressure overload-induced heart failure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proteomic%20remodelling%20of%20mitochondrial%20oxidative%20pathways%20in%20pressure%20overload-induced%20heart%20failure&rft.jtitle=Cardiovascular%20research&rft.au=Bugger,%20Heiko&rft.date=2010-01-15&rft.volume=85&rft.issue=2&rft.spage=376&rft.epage=384&rft.pages=376-384&rft.issn=0008-6363&rft.eissn=1755-3245&rft.coden=CVREAU&rft_id=info:doi/10.1093/cvr/cvp344&rft_dat=%3Cproquest_cross%3E733609334%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733609334&rft_id=info:pmid/19843514&rft_oup_id=10.1093/cvr/cvp344&rfr_iscdi=true |