Bidirectional induction toward paraxial mesodermal derivatives from mouse ES cells in chemically defined medium

Embryonic stem cells (ESCs) are a renewable cell source of tissue for regenerative therapies. The addition of bone morphogenetic protein 4 (BMP4) to serum-free ESC cultures can induce primitive streak-like mesodermal cells. In differentiated mouse ESCs, platelet-derived growth factor receptor-α (PDG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stem cell research 2009-09, Vol.3 (2), p.157-169
Hauptverfasser: Sakurai, Hidetoshi, Inami, Yuta, Tamamura, Yukie, Yoshikai, Toru, Sehara-Fujisawa, Atsuko, Isobe, Ken-Ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Embryonic stem cells (ESCs) are a renewable cell source of tissue for regenerative therapies. The addition of bone morphogenetic protein 4 (BMP4) to serum-free ESC cultures can induce primitive streak-like mesodermal cells. In differentiated mouse ESCs, platelet-derived growth factor receptor-α (PDGFR-α) and E-cadherin (ECD) are useful markers to distinguish between paraxial mesodermal progenitor cells and undifferentiated and endodermal cells, respectively. Here, we demonstrate methods for BMP4-mediated induction of paraxial mesodermal progenitors using PDGFR-α and ECD as markers for purification and characterization. Serum-free monolayers of ESCs cultured with BMP4 could efficiently promote paraxial mesodermal differentiation akin to embryonic mesodermal development. BMP4 treatment alone induced paraxial mesodermal progenitors that could differentiate into osteochondrogenic cells in vitro and in vivo. Furthermore, early removal of BMP4 followed by lithium chloride (LiCl) promoted the differentiation to myogenic progenitor cells. These myogenic progenitors were able to differentiate further in vitro into mature skeletal muscle cells. Thus, we successfully induced the efficient bidirectional differentiation of mouse ESCs toward osteochondrogenic and myogenic cell types using chemically defined conditions.
ISSN:1873-5061
1876-7753
DOI:10.1016/j.scr.2009.08.002