Heteronuclear decoupling by optimal tracking
The problem to design efficient heteronuclear decoupling sequences is studied using optimal control methods. A generalized version of the gradient ascent engineering (GRAPE) algorithm is presented that makes it possible to design complex non-periodic decoupling sequences which are characterized by t...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance (1997) 2009-11, Vol.201 (1), p.7-17 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 1 |
container_start_page | 7 |
container_title | Journal of magnetic resonance (1997) |
container_volume | 201 |
creator | Neves, Jorge L. Heitmann, Björn Khaneja, Navin Glaser, Steffen J. |
description | The problem to design efficient heteronuclear decoupling sequences is studied using optimal control methods. A generalized version of the gradient ascent engineering (GRAPE) algorithm is presented that makes it possible to design complex non-periodic decoupling sequences which are characterized by tens of thousands of pulse sequence parameters. In contrast to conventional approaches based on average Hamiltonian theory, the concept of optimal tracking is used: a pulse sequence is designed that steers the evolution of an ensemble of spin systems such that at a series of time points, a specified trajectory of the density operator is tracked as closely as possible. The approach is demonstrated for the case of low-power heteronuclear decoupling in the liquid state for
in vivo applications. Compared to conventional sequences, significant gains in decoupling efficiency and robustness with respect to offset and inhomogeneity of the radio-frequency field were found in simulations and experiments. |
doi_str_mv | 10.1016/j.jmr.2009.07.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733601805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1090780709002274</els_id><sourcerecordid>34984805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-66769083eca1d6263b1b5d7c5ec52ca169221ab6c3dfd3298b91105dfd5f5de73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlZ_gBfpST2460zSJBs8iagVBC96DrvJVLbudmuyK_jvjbbgraf54JmX4WHsFCFHQHW9zJdtyDmAyUHnwGd7bIxgVAaFVPt_PWS6AD1iRzEuARClhkM2QqOMNCjG7GpOPYVuNbiGyjD15Lph3dSr92n1Pe3Wfd2WzbQPpftIu2N2sCibSCfbOmFvD_evd_Ps-eXx6e72OXMzVH2mlFYGCkGuRK-4EhVW0msnyUmedspwjmWlnPALL7gpKoMIMg1yIT1pMWEXm9x16D4Hir1t6-ioacoVdUO0WggFWIBM5PlOUsxMMduAlztB5OlryXkhEoob1IUuxkALuw5JQ_i2CPbXu13a5N3-eregbfKebs628UPVkv-_2IpOwM0GoOTtq6Zgo6tp5cjXgVxvfVfviP8BTIWRsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266752283</pqid></control><display><type>article</type><title>Heteronuclear decoupling by optimal tracking</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Neves, Jorge L. ; Heitmann, Björn ; Khaneja, Navin ; Glaser, Steffen J.</creator><creatorcontrib>Neves, Jorge L. ; Heitmann, Björn ; Khaneja, Navin ; Glaser, Steffen J.</creatorcontrib><description>The problem to design efficient heteronuclear decoupling sequences is studied using optimal control methods. A generalized version of the gradient ascent engineering (GRAPE) algorithm is presented that makes it possible to design complex non-periodic decoupling sequences which are characterized by tens of thousands of pulse sequence parameters. In contrast to conventional approaches based on average Hamiltonian theory, the concept of optimal tracking is used: a pulse sequence is designed that steers the evolution of an ensemble of spin systems such that at a series of time points, a specified trajectory of the density operator is tracked as closely as possible. The approach is demonstrated for the case of low-power heteronuclear decoupling in the liquid state for
in vivo applications. Compared to conventional sequences, significant gains in decoupling efficiency and robustness with respect to offset and inhomogeneity of the radio-frequency field were found in simulations and experiments.</description><identifier>ISSN: 1090-7807</identifier><identifier>EISSN: 1096-0856</identifier><identifier>DOI: 10.1016/j.jmr.2009.07.024</identifier><identifier>PMID: 19695913</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Average Hamiltonian theory ; Computer simulation ; Decoupling ; Density ; Design engineering ; GRAPE algorithm ; Heteronuclear decoupling ; Magnetic resonance ; Magnetic Resonance Spectroscopy - statistics & numerical data ; Models, Chemical ; Models, Statistical ; Optimal control theory ; Optimization ; Tracking</subject><ispartof>Journal of magnetic resonance (1997), 2009-11, Vol.201 (1), p.7-17</ispartof><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-66769083eca1d6263b1b5d7c5ec52ca169221ab6c3dfd3298b91105dfd5f5de73</citedby><cites>FETCH-LOGICAL-c416t-66769083eca1d6263b1b5d7c5ec52ca169221ab6c3dfd3298b91105dfd5f5de73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmr.2009.07.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19695913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Neves, Jorge L.</creatorcontrib><creatorcontrib>Heitmann, Björn</creatorcontrib><creatorcontrib>Khaneja, Navin</creatorcontrib><creatorcontrib>Glaser, Steffen J.</creatorcontrib><title>Heteronuclear decoupling by optimal tracking</title><title>Journal of magnetic resonance (1997)</title><addtitle>J Magn Reson</addtitle><description>The problem to design efficient heteronuclear decoupling sequences is studied using optimal control methods. A generalized version of the gradient ascent engineering (GRAPE) algorithm is presented that makes it possible to design complex non-periodic decoupling sequences which are characterized by tens of thousands of pulse sequence parameters. In contrast to conventional approaches based on average Hamiltonian theory, the concept of optimal tracking is used: a pulse sequence is designed that steers the evolution of an ensemble of spin systems such that at a series of time points, a specified trajectory of the density operator is tracked as closely as possible. The approach is demonstrated for the case of low-power heteronuclear decoupling in the liquid state for
in vivo applications. Compared to conventional sequences, significant gains in decoupling efficiency and robustness with respect to offset and inhomogeneity of the radio-frequency field were found in simulations and experiments.</description><subject>Algorithms</subject><subject>Average Hamiltonian theory</subject><subject>Computer simulation</subject><subject>Decoupling</subject><subject>Density</subject><subject>Design engineering</subject><subject>GRAPE algorithm</subject><subject>Heteronuclear decoupling</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Spectroscopy - statistics & numerical data</subject><subject>Models, Chemical</subject><subject>Models, Statistical</subject><subject>Optimal control theory</subject><subject>Optimization</subject><subject>Tracking</subject><issn>1090-7807</issn><issn>1096-0856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlZ_gBfpST2460zSJBs8iagVBC96DrvJVLbudmuyK_jvjbbgraf54JmX4WHsFCFHQHW9zJdtyDmAyUHnwGd7bIxgVAaFVPt_PWS6AD1iRzEuARClhkM2QqOMNCjG7GpOPYVuNbiGyjD15Lph3dSr92n1Pe3Wfd2WzbQPpftIu2N2sCibSCfbOmFvD_evd_Ps-eXx6e72OXMzVH2mlFYGCkGuRK-4EhVW0msnyUmedspwjmWlnPALL7gpKoMIMg1yIT1pMWEXm9x16D4Hir1t6-ioacoVdUO0WggFWIBM5PlOUsxMMduAlztB5OlryXkhEoob1IUuxkALuw5JQ_i2CPbXu13a5N3-eregbfKebs628UPVkv-_2IpOwM0GoOTtq6Zgo6tp5cjXgVxvfVfviP8BTIWRsA</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Neves, Jorge L.</creator><creator>Heitmann, Björn</creator><creator>Khaneja, Navin</creator><creator>Glaser, Steffen J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20091101</creationdate><title>Heteronuclear decoupling by optimal tracking</title><author>Neves, Jorge L. ; Heitmann, Björn ; Khaneja, Navin ; Glaser, Steffen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-66769083eca1d6263b1b5d7c5ec52ca169221ab6c3dfd3298b91105dfd5f5de73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Average Hamiltonian theory</topic><topic>Computer simulation</topic><topic>Decoupling</topic><topic>Density</topic><topic>Design engineering</topic><topic>GRAPE algorithm</topic><topic>Heteronuclear decoupling</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Spectroscopy - statistics & numerical data</topic><topic>Models, Chemical</topic><topic>Models, Statistical</topic><topic>Optimal control theory</topic><topic>Optimization</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neves, Jorge L.</creatorcontrib><creatorcontrib>Heitmann, Björn</creatorcontrib><creatorcontrib>Khaneja, Navin</creatorcontrib><creatorcontrib>Glaser, Steffen J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance (1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neves, Jorge L.</au><au>Heitmann, Björn</au><au>Khaneja, Navin</au><au>Glaser, Steffen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heteronuclear decoupling by optimal tracking</atitle><jtitle>Journal of magnetic resonance (1997)</jtitle><addtitle>J Magn Reson</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>201</volume><issue>1</issue><spage>7</spage><epage>17</epage><pages>7-17</pages><issn>1090-7807</issn><eissn>1096-0856</eissn><abstract>The problem to design efficient heteronuclear decoupling sequences is studied using optimal control methods. A generalized version of the gradient ascent engineering (GRAPE) algorithm is presented that makes it possible to design complex non-periodic decoupling sequences which are characterized by tens of thousands of pulse sequence parameters. In contrast to conventional approaches based on average Hamiltonian theory, the concept of optimal tracking is used: a pulse sequence is designed that steers the evolution of an ensemble of spin systems such that at a series of time points, a specified trajectory of the density operator is tracked as closely as possible. The approach is demonstrated for the case of low-power heteronuclear decoupling in the liquid state for
in vivo applications. Compared to conventional sequences, significant gains in decoupling efficiency and robustness with respect to offset and inhomogeneity of the radio-frequency field were found in simulations and experiments.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19695913</pmid><doi>10.1016/j.jmr.2009.07.024</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1090-7807 |
ispartof | Journal of magnetic resonance (1997), 2009-11, Vol.201 (1), p.7-17 |
issn | 1090-7807 1096-0856 |
language | eng |
recordid | cdi_proquest_miscellaneous_733601805 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Algorithms Average Hamiltonian theory Computer simulation Decoupling Density Design engineering GRAPE algorithm Heteronuclear decoupling Magnetic resonance Magnetic Resonance Spectroscopy - statistics & numerical data Models, Chemical Models, Statistical Optimal control theory Optimization Tracking |
title | Heteronuclear decoupling by optimal tracking |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heteronuclear%20decoupling%20by%20optimal%20tracking&rft.jtitle=Journal%20of%20magnetic%20resonance%20(1997)&rft.au=Neves,%20Jorge%20L.&rft.date=2009-11-01&rft.volume=201&rft.issue=1&rft.spage=7&rft.epage=17&rft.pages=7-17&rft.issn=1090-7807&rft.eissn=1096-0856&rft_id=info:doi/10.1016/j.jmr.2009.07.024&rft_dat=%3Cproquest_cross%3E34984805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266752283&rft_id=info:pmid/19695913&rft_els_id=S1090780709002274&rfr_iscdi=true |