Heteronuclear decoupling by optimal tracking

The problem to design efficient heteronuclear decoupling sequences is studied using optimal control methods. A generalized version of the gradient ascent engineering (GRAPE) algorithm is presented that makes it possible to design complex non-periodic decoupling sequences which are characterized by t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance (1997) 2009-11, Vol.201 (1), p.7-17
Hauptverfasser: Neves, Jorge L., Heitmann, Björn, Khaneja, Navin, Glaser, Steffen J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 7
container_title Journal of magnetic resonance (1997)
container_volume 201
creator Neves, Jorge L.
Heitmann, Björn
Khaneja, Navin
Glaser, Steffen J.
description The problem to design efficient heteronuclear decoupling sequences is studied using optimal control methods. A generalized version of the gradient ascent engineering (GRAPE) algorithm is presented that makes it possible to design complex non-periodic decoupling sequences which are characterized by tens of thousands of pulse sequence parameters. In contrast to conventional approaches based on average Hamiltonian theory, the concept of optimal tracking is used: a pulse sequence is designed that steers the evolution of an ensemble of spin systems such that at a series of time points, a specified trajectory of the density operator is tracked as closely as possible. The approach is demonstrated for the case of low-power heteronuclear decoupling in the liquid state for in vivo applications. Compared to conventional sequences, significant gains in decoupling efficiency and robustness with respect to offset and inhomogeneity of the radio-frequency field were found in simulations and experiments.
doi_str_mv 10.1016/j.jmr.2009.07.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733601805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1090780709002274</els_id><sourcerecordid>34984805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-66769083eca1d6263b1b5d7c5ec52ca169221ab6c3dfd3298b91105dfd5f5de73</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMotlZ_gBfpST2460zSJBs8iagVBC96DrvJVLbudmuyK_jvjbbgraf54JmX4WHsFCFHQHW9zJdtyDmAyUHnwGd7bIxgVAaFVPt_PWS6AD1iRzEuARClhkM2QqOMNCjG7GpOPYVuNbiGyjD15Lph3dSr92n1Pe3Wfd2WzbQPpftIu2N2sCibSCfbOmFvD_evd_Ps-eXx6e72OXMzVH2mlFYGCkGuRK-4EhVW0msnyUmedspwjmWlnPALL7gpKoMIMg1yIT1pMWEXm9x16D4Hir1t6-ioacoVdUO0WggFWIBM5PlOUsxMMduAlztB5OlryXkhEoob1IUuxkALuw5JQ_i2CPbXu13a5N3-eregbfKebs628UPVkv-_2IpOwM0GoOTtq6Zgo6tp5cjXgVxvfVfviP8BTIWRsA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1266752283</pqid></control><display><type>article</type><title>Heteronuclear decoupling by optimal tracking</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Neves, Jorge L. ; Heitmann, Björn ; Khaneja, Navin ; Glaser, Steffen J.</creator><creatorcontrib>Neves, Jorge L. ; Heitmann, Björn ; Khaneja, Navin ; Glaser, Steffen J.</creatorcontrib><description>The problem to design efficient heteronuclear decoupling sequences is studied using optimal control methods. A generalized version of the gradient ascent engineering (GRAPE) algorithm is presented that makes it possible to design complex non-periodic decoupling sequences which are characterized by tens of thousands of pulse sequence parameters. In contrast to conventional approaches based on average Hamiltonian theory, the concept of optimal tracking is used: a pulse sequence is designed that steers the evolution of an ensemble of spin systems such that at a series of time points, a specified trajectory of the density operator is tracked as closely as possible. The approach is demonstrated for the case of low-power heteronuclear decoupling in the liquid state for in vivo applications. Compared to conventional sequences, significant gains in decoupling efficiency and robustness with respect to offset and inhomogeneity of the radio-frequency field were found in simulations and experiments.</description><identifier>ISSN: 1090-7807</identifier><identifier>EISSN: 1096-0856</identifier><identifier>DOI: 10.1016/j.jmr.2009.07.024</identifier><identifier>PMID: 19695913</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Average Hamiltonian theory ; Computer simulation ; Decoupling ; Density ; Design engineering ; GRAPE algorithm ; Heteronuclear decoupling ; Magnetic resonance ; Magnetic Resonance Spectroscopy - statistics &amp; numerical data ; Models, Chemical ; Models, Statistical ; Optimal control theory ; Optimization ; Tracking</subject><ispartof>Journal of magnetic resonance (1997), 2009-11, Vol.201 (1), p.7-17</ispartof><rights>2009 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-66769083eca1d6263b1b5d7c5ec52ca169221ab6c3dfd3298b91105dfd5f5de73</citedby><cites>FETCH-LOGICAL-c416t-66769083eca1d6263b1b5d7c5ec52ca169221ab6c3dfd3298b91105dfd5f5de73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmr.2009.07.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19695913$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Neves, Jorge L.</creatorcontrib><creatorcontrib>Heitmann, Björn</creatorcontrib><creatorcontrib>Khaneja, Navin</creatorcontrib><creatorcontrib>Glaser, Steffen J.</creatorcontrib><title>Heteronuclear decoupling by optimal tracking</title><title>Journal of magnetic resonance (1997)</title><addtitle>J Magn Reson</addtitle><description>The problem to design efficient heteronuclear decoupling sequences is studied using optimal control methods. A generalized version of the gradient ascent engineering (GRAPE) algorithm is presented that makes it possible to design complex non-periodic decoupling sequences which are characterized by tens of thousands of pulse sequence parameters. In contrast to conventional approaches based on average Hamiltonian theory, the concept of optimal tracking is used: a pulse sequence is designed that steers the evolution of an ensemble of spin systems such that at a series of time points, a specified trajectory of the density operator is tracked as closely as possible. The approach is demonstrated for the case of low-power heteronuclear decoupling in the liquid state for in vivo applications. Compared to conventional sequences, significant gains in decoupling efficiency and robustness with respect to offset and inhomogeneity of the radio-frequency field were found in simulations and experiments.</description><subject>Algorithms</subject><subject>Average Hamiltonian theory</subject><subject>Computer simulation</subject><subject>Decoupling</subject><subject>Density</subject><subject>Design engineering</subject><subject>GRAPE algorithm</subject><subject>Heteronuclear decoupling</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Spectroscopy - statistics &amp; numerical data</subject><subject>Models, Chemical</subject><subject>Models, Statistical</subject><subject>Optimal control theory</subject><subject>Optimization</subject><subject>Tracking</subject><issn>1090-7807</issn><issn>1096-0856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LAzEQhoMotlZ_gBfpST2460zSJBs8iagVBC96DrvJVLbudmuyK_jvjbbgraf54JmX4WHsFCFHQHW9zJdtyDmAyUHnwGd7bIxgVAaFVPt_PWS6AD1iRzEuARClhkM2QqOMNCjG7GpOPYVuNbiGyjD15Lph3dSr92n1Pe3Wfd2WzbQPpftIu2N2sCibSCfbOmFvD_evd_Ps-eXx6e72OXMzVH2mlFYGCkGuRK-4EhVW0msnyUmedspwjmWlnPALL7gpKoMIMg1yIT1pMWEXm9x16D4Hir1t6-ioacoVdUO0WggFWIBM5PlOUsxMMduAlztB5OlryXkhEoob1IUuxkALuw5JQ_i2CPbXu13a5N3-eregbfKebs628UPVkv-_2IpOwM0GoOTtq6Zgo6tp5cjXgVxvfVfviP8BTIWRsA</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Neves, Jorge L.</creator><creator>Heitmann, Björn</creator><creator>Khaneja, Navin</creator><creator>Glaser, Steffen J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20091101</creationdate><title>Heteronuclear decoupling by optimal tracking</title><author>Neves, Jorge L. ; Heitmann, Björn ; Khaneja, Navin ; Glaser, Steffen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-66769083eca1d6263b1b5d7c5ec52ca169221ab6c3dfd3298b91105dfd5f5de73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Average Hamiltonian theory</topic><topic>Computer simulation</topic><topic>Decoupling</topic><topic>Density</topic><topic>Design engineering</topic><topic>GRAPE algorithm</topic><topic>Heteronuclear decoupling</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Spectroscopy - statistics &amp; numerical data</topic><topic>Models, Chemical</topic><topic>Models, Statistical</topic><topic>Optimal control theory</topic><topic>Optimization</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neves, Jorge L.</creatorcontrib><creatorcontrib>Heitmann, Björn</creatorcontrib><creatorcontrib>Khaneja, Navin</creatorcontrib><creatorcontrib>Glaser, Steffen J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance (1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neves, Jorge L.</au><au>Heitmann, Björn</au><au>Khaneja, Navin</au><au>Glaser, Steffen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heteronuclear decoupling by optimal tracking</atitle><jtitle>Journal of magnetic resonance (1997)</jtitle><addtitle>J Magn Reson</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>201</volume><issue>1</issue><spage>7</spage><epage>17</epage><pages>7-17</pages><issn>1090-7807</issn><eissn>1096-0856</eissn><abstract>The problem to design efficient heteronuclear decoupling sequences is studied using optimal control methods. A generalized version of the gradient ascent engineering (GRAPE) algorithm is presented that makes it possible to design complex non-periodic decoupling sequences which are characterized by tens of thousands of pulse sequence parameters. In contrast to conventional approaches based on average Hamiltonian theory, the concept of optimal tracking is used: a pulse sequence is designed that steers the evolution of an ensemble of spin systems such that at a series of time points, a specified trajectory of the density operator is tracked as closely as possible. The approach is demonstrated for the case of low-power heteronuclear decoupling in the liquid state for in vivo applications. Compared to conventional sequences, significant gains in decoupling efficiency and robustness with respect to offset and inhomogeneity of the radio-frequency field were found in simulations and experiments.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19695913</pmid><doi>10.1016/j.jmr.2009.07.024</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1090-7807
ispartof Journal of magnetic resonance (1997), 2009-11, Vol.201 (1), p.7-17
issn 1090-7807
1096-0856
language eng
recordid cdi_proquest_miscellaneous_733601805
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Average Hamiltonian theory
Computer simulation
Decoupling
Density
Design engineering
GRAPE algorithm
Heteronuclear decoupling
Magnetic resonance
Magnetic Resonance Spectroscopy - statistics & numerical data
Models, Chemical
Models, Statistical
Optimal control theory
Optimization
Tracking
title Heteronuclear decoupling by optimal tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A20%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heteronuclear%20decoupling%20by%20optimal%20tracking&rft.jtitle=Journal%20of%20magnetic%20resonance%20(1997)&rft.au=Neves,%20Jorge%20L.&rft.date=2009-11-01&rft.volume=201&rft.issue=1&rft.spage=7&rft.epage=17&rft.pages=7-17&rft.issn=1090-7807&rft.eissn=1096-0856&rft_id=info:doi/10.1016/j.jmr.2009.07.024&rft_dat=%3Cproquest_cross%3E34984805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1266752283&rft_id=info:pmid/19695913&rft_els_id=S1090780709002274&rfr_iscdi=true