Data requirements of GREAT-ER: Modelling and validation using LAS in four UK catchments

Higher-tier environmental risk assessments on “down-the-drain” chemicals in river networks can be conducted using models such as GREAT-ER (Geography-referenced Regional Exposure Assessment Tool for European Rivers). It is important these models are evaluated and their sensitivities to input variable...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2009-10, Vol.157 (10), p.2610-2616
Hauptverfasser: Price, Oliver R., Munday, Dawn K., Whelan, Mick J., Holt, Martin S., Fox, Katharine K., Morris, Gerard, Young, Andrew R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2616
container_issue 10
container_start_page 2610
container_title Environmental pollution (1987)
container_volume 157
creator Price, Oliver R.
Munday, Dawn K.
Whelan, Mick J.
Holt, Martin S.
Fox, Katharine K.
Morris, Gerard
Young, Andrew R.
description Higher-tier environmental risk assessments on “down-the-drain” chemicals in river networks can be conducted using models such as GREAT-ER (Geography-referenced Regional Exposure Assessment Tool for European Rivers). It is important these models are evaluated and their sensitivities to input variables understood. This study had two primary objectives: evaluate GREAT-ER model performance, comparing simulated modelled predictions for LAS (linear alkylbenzene sulphonate) with measured concentrations, for four rivers in the UK, and investigate model sensitivity to input variables. We demonstrate that the GREAT-ER model is very sensitive to variability in river discharges. However it is insensitive to the form of distributions used to describe chemical usage and removal rate in sewage treatment plants (STPs). It is concluded that more effort should be directed towards improving empirical estimates of effluent load and reducing uncertainty associated with usage and removal rates in STPs. Simulations could be improved by incorporating the effect of river depth on dissipation rates. Validation of GREAT-ER.
doi_str_mv 10.1016/j.envpol.2009.05.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733576058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0269749109002383</els_id><sourcerecordid>34738891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c510t-4befccad586b386d3973716d83e2b74e4e34ac6a02c505dda531e1119c2d64ee3</originalsourceid><addsrcrecordid>eNqF0stuEzEUBuARAtG08AYIvOGymXB8n2GBFLWhIIKQ2kYsLcc-UxxNZlJ7JhJvj0Mi2IWVJes7F-t3UbygMKVA1fv1FLvdtm-nDKCegpwChUfFhFaal0ow8biYAFN1qUVNz4rzlNYAIDjnT4szWksmuIBJ8ePKDpZEfBhDxA12QyJ9Q65v5rO7cn7zgXzrPbZt6O6J7TzZ2TZ4O4S-I2PaXy5mtyR0pOnHSJZfibOD-_mny7PiSWPbhM-P50Wx_DS_u_xcLr5ff7mcLUonKQylWGHjnPWyUiteKc9rzTVVvuLIVlqgQC6sUxaYkyC9t5JTpJTWjnklEPlF8fbQdxv7hxHTYDYhubyy7bAfk9GcS61AVlm-OSm50LyqavpfyECrLFmG705CqrWmAFypTMWButinFLEx2xg2Nv4yFMw-TrM2hzjNPk4D0uQ4c9nL44RxtUH_r-iYXwavj8AmZ9sm2s6F9NcxWsn8pv2qrw6usb2x9zGb5S0DyvNoTYXSWXw8CMxp7QJGk1zAzqHPH8MNxvfh9K6_AQkgxoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777100366</pqid></control><display><type>article</type><title>Data requirements of GREAT-ER: Modelling and validation using LAS in four UK catchments</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Price, Oliver R. ; Munday, Dawn K. ; Whelan, Mick J. ; Holt, Martin S. ; Fox, Katharine K. ; Morris, Gerard ; Young, Andrew R.</creator><creatorcontrib>Price, Oliver R. ; Munday, Dawn K. ; Whelan, Mick J. ; Holt, Martin S. ; Fox, Katharine K. ; Morris, Gerard ; Young, Andrew R.</creatorcontrib><description>Higher-tier environmental risk assessments on “down-the-drain” chemicals in river networks can be conducted using models such as GREAT-ER (Geography-referenced Regional Exposure Assessment Tool for European Rivers). It is important these models are evaluated and their sensitivities to input variables understood. This study had two primary objectives: evaluate GREAT-ER model performance, comparing simulated modelled predictions for LAS (linear alkylbenzene sulphonate) with measured concentrations, for four rivers in the UK, and investigate model sensitivity to input variables. We demonstrate that the GREAT-ER model is very sensitive to variability in river discharges. However it is insensitive to the form of distributions used to describe chemical usage and removal rate in sewage treatment plants (STPs). It is concluded that more effort should be directed towards improving empirical estimates of effluent load and reducing uncertainty associated with usage and removal rates in STPs. Simulations could be improved by incorporating the effect of river depth on dissipation rates. Validation of GREAT-ER.</description><identifier>ISSN: 0269-7491</identifier><identifier>EISSN: 1873-6424</identifier><identifier>DOI: 10.1016/j.envpol.2009.05.010</identifier><identifier>PMID: 19524340</identifier><identifier>CODEN: ENVPAF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alkanesulfonic Acids - analysis ; Alkylbenzene ; Animal, plant and microbial ecology ; Applied ecology ; Applied sciences ; Assessments ; Biological and medical sciences ; Computer simulation ; Continental surface waters ; Earth sciences ; Earth, ocean, space ; Ecotoxicology, biological effects of pollution ; Engineering and environment geology. Geothermics ; Environmental exposure assessment ; environmental monitoring ; Environmental Monitoring - instrumentation ; Environmental Monitoring - methods ; Exact sciences and technology ; Fresh water environment ; Fundamental and applied biological sciences. Psychology ; geographic information systems ; GREAT-ER ; LAS ; Mathematical models ; model validation ; Models, Theoretical ; Natural water pollution ; Networks ; personal care products ; pollutants ; Pollution ; Pollution, environment geology ; prediction ; risk assessment ; Rivers ; Rivers - chemistry ; simulation models ; spatial distribution ; stream flow ; temporal variation ; United Kingdom ; Validation ; Water Pollutants, Chemical - analysis ; Water Pollution ; Water treatment and pollution</subject><ispartof>Environmental pollution (1987), 2009-10, Vol.157 (10), p.2610-2616</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c510t-4befccad586b386d3973716d83e2b74e4e34ac6a02c505dda531e1119c2d64ee3</citedby><cites>FETCH-LOGICAL-c510t-4befccad586b386d3973716d83e2b74e4e34ac6a02c505dda531e1119c2d64ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0269749109002383$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21858892$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19524340$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Price, Oliver R.</creatorcontrib><creatorcontrib>Munday, Dawn K.</creatorcontrib><creatorcontrib>Whelan, Mick J.</creatorcontrib><creatorcontrib>Holt, Martin S.</creatorcontrib><creatorcontrib>Fox, Katharine K.</creatorcontrib><creatorcontrib>Morris, Gerard</creatorcontrib><creatorcontrib>Young, Andrew R.</creatorcontrib><title>Data requirements of GREAT-ER: Modelling and validation using LAS in four UK catchments</title><title>Environmental pollution (1987)</title><addtitle>Environ Pollut</addtitle><description>Higher-tier environmental risk assessments on “down-the-drain” chemicals in river networks can be conducted using models such as GREAT-ER (Geography-referenced Regional Exposure Assessment Tool for European Rivers). It is important these models are evaluated and their sensitivities to input variables understood. This study had two primary objectives: evaluate GREAT-ER model performance, comparing simulated modelled predictions for LAS (linear alkylbenzene sulphonate) with measured concentrations, for four rivers in the UK, and investigate model sensitivity to input variables. We demonstrate that the GREAT-ER model is very sensitive to variability in river discharges. However it is insensitive to the form of distributions used to describe chemical usage and removal rate in sewage treatment plants (STPs). It is concluded that more effort should be directed towards improving empirical estimates of effluent load and reducing uncertainty associated with usage and removal rates in STPs. Simulations could be improved by incorporating the effect of river depth on dissipation rates. Validation of GREAT-ER.</description><subject>Alkanesulfonic Acids - analysis</subject><subject>Alkylbenzene</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied ecology</subject><subject>Applied sciences</subject><subject>Assessments</subject><subject>Biological and medical sciences</subject><subject>Computer simulation</subject><subject>Continental surface waters</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environmental exposure assessment</subject><subject>environmental monitoring</subject><subject>Environmental Monitoring - instrumentation</subject><subject>Environmental Monitoring - methods</subject><subject>Exact sciences and technology</subject><subject>Fresh water environment</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>geographic information systems</subject><subject>GREAT-ER</subject><subject>LAS</subject><subject>Mathematical models</subject><subject>model validation</subject><subject>Models, Theoretical</subject><subject>Natural water pollution</subject><subject>Networks</subject><subject>personal care products</subject><subject>pollutants</subject><subject>Pollution</subject><subject>Pollution, environment geology</subject><subject>prediction</subject><subject>risk assessment</subject><subject>Rivers</subject><subject>Rivers - chemistry</subject><subject>simulation models</subject><subject>spatial distribution</subject><subject>stream flow</subject><subject>temporal variation</subject><subject>United Kingdom</subject><subject>Validation</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Pollution</subject><subject>Water treatment and pollution</subject><issn>0269-7491</issn><issn>1873-6424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0stuEzEUBuARAtG08AYIvOGymXB8n2GBFLWhIIKQ2kYsLcc-UxxNZlJ7JhJvj0Mi2IWVJes7F-t3UbygMKVA1fv1FLvdtm-nDKCegpwChUfFhFaal0ow8biYAFN1qUVNz4rzlNYAIDjnT4szWksmuIBJ8ePKDpZEfBhDxA12QyJ9Q65v5rO7cn7zgXzrPbZt6O6J7TzZ2TZ4O4S-I2PaXy5mtyR0pOnHSJZfibOD-_mny7PiSWPbhM-P50Wx_DS_u_xcLr5ff7mcLUonKQylWGHjnPWyUiteKc9rzTVVvuLIVlqgQC6sUxaYkyC9t5JTpJTWjnklEPlF8fbQdxv7hxHTYDYhubyy7bAfk9GcS61AVlm-OSm50LyqavpfyECrLFmG705CqrWmAFypTMWButinFLEx2xg2Nv4yFMw-TrM2hzjNPk4D0uQ4c9nL44RxtUH_r-iYXwavj8AmZ9sm2s6F9NcxWsn8pv2qrw6usb2x9zGb5S0DyvNoTYXSWXw8CMxp7QJGk1zAzqHPH8MNxvfh9K6_AQkgxoU</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Price, Oliver R.</creator><creator>Munday, Dawn K.</creator><creator>Whelan, Mick J.</creator><creator>Holt, Martin S.</creator><creator>Fox, Katharine K.</creator><creator>Morris, Gerard</creator><creator>Young, Andrew R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope></search><sort><creationdate>20091001</creationdate><title>Data requirements of GREAT-ER: Modelling and validation using LAS in four UK catchments</title><author>Price, Oliver R. ; Munday, Dawn K. ; Whelan, Mick J. ; Holt, Martin S. ; Fox, Katharine K. ; Morris, Gerard ; Young, Andrew R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c510t-4befccad586b386d3973716d83e2b74e4e34ac6a02c505dda531e1119c2d64ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Alkanesulfonic Acids - analysis</topic><topic>Alkylbenzene</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied ecology</topic><topic>Applied sciences</topic><topic>Assessments</topic><topic>Biological and medical sciences</topic><topic>Computer simulation</topic><topic>Continental surface waters</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environmental exposure assessment</topic><topic>environmental monitoring</topic><topic>Environmental Monitoring - instrumentation</topic><topic>Environmental Monitoring - methods</topic><topic>Exact sciences and technology</topic><topic>Fresh water environment</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>geographic information systems</topic><topic>GREAT-ER</topic><topic>LAS</topic><topic>Mathematical models</topic><topic>model validation</topic><topic>Models, Theoretical</topic><topic>Natural water pollution</topic><topic>Networks</topic><topic>personal care products</topic><topic>pollutants</topic><topic>Pollution</topic><topic>Pollution, environment geology</topic><topic>prediction</topic><topic>risk assessment</topic><topic>Rivers</topic><topic>Rivers - chemistry</topic><topic>simulation models</topic><topic>spatial distribution</topic><topic>stream flow</topic><topic>temporal variation</topic><topic>United Kingdom</topic><topic>Validation</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Pollution</topic><topic>Water treatment and pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Price, Oliver R.</creatorcontrib><creatorcontrib>Munday, Dawn K.</creatorcontrib><creatorcontrib>Whelan, Mick J.</creatorcontrib><creatorcontrib>Holt, Martin S.</creatorcontrib><creatorcontrib>Fox, Katharine K.</creatorcontrib><creatorcontrib>Morris, Gerard</creatorcontrib><creatorcontrib>Young, Andrew R.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental pollution (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Price, Oliver R.</au><au>Munday, Dawn K.</au><au>Whelan, Mick J.</au><au>Holt, Martin S.</au><au>Fox, Katharine K.</au><au>Morris, Gerard</au><au>Young, Andrew R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data requirements of GREAT-ER: Modelling and validation using LAS in four UK catchments</atitle><jtitle>Environmental pollution (1987)</jtitle><addtitle>Environ Pollut</addtitle><date>2009-10-01</date><risdate>2009</risdate><volume>157</volume><issue>10</issue><spage>2610</spage><epage>2616</epage><pages>2610-2616</pages><issn>0269-7491</issn><eissn>1873-6424</eissn><coden>ENVPAF</coden><abstract>Higher-tier environmental risk assessments on “down-the-drain” chemicals in river networks can be conducted using models such as GREAT-ER (Geography-referenced Regional Exposure Assessment Tool for European Rivers). It is important these models are evaluated and their sensitivities to input variables understood. This study had two primary objectives: evaluate GREAT-ER model performance, comparing simulated modelled predictions for LAS (linear alkylbenzene sulphonate) with measured concentrations, for four rivers in the UK, and investigate model sensitivity to input variables. We demonstrate that the GREAT-ER model is very sensitive to variability in river discharges. However it is insensitive to the form of distributions used to describe chemical usage and removal rate in sewage treatment plants (STPs). It is concluded that more effort should be directed towards improving empirical estimates of effluent load and reducing uncertainty associated with usage and removal rates in STPs. Simulations could be improved by incorporating the effect of river depth on dissipation rates. Validation of GREAT-ER.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>19524340</pmid><doi>10.1016/j.envpol.2009.05.010</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0269-7491
ispartof Environmental pollution (1987), 2009-10, Vol.157 (10), p.2610-2616
issn 0269-7491
1873-6424
language eng
recordid cdi_proquest_miscellaneous_733576058
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Alkanesulfonic Acids - analysis
Alkylbenzene
Animal, plant and microbial ecology
Applied ecology
Applied sciences
Assessments
Biological and medical sciences
Computer simulation
Continental surface waters
Earth sciences
Earth, ocean, space
Ecotoxicology, biological effects of pollution
Engineering and environment geology. Geothermics
Environmental exposure assessment
environmental monitoring
Environmental Monitoring - instrumentation
Environmental Monitoring - methods
Exact sciences and technology
Fresh water environment
Fundamental and applied biological sciences. Psychology
geographic information systems
GREAT-ER
LAS
Mathematical models
model validation
Models, Theoretical
Natural water pollution
Networks
personal care products
pollutants
Pollution
Pollution, environment geology
prediction
risk assessment
Rivers
Rivers - chemistry
simulation models
spatial distribution
stream flow
temporal variation
United Kingdom
Validation
Water Pollutants, Chemical - analysis
Water Pollution
Water treatment and pollution
title Data requirements of GREAT-ER: Modelling and validation using LAS in four UK catchments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T08%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%20requirements%20of%20GREAT-ER:%20Modelling%20and%20validation%20using%20LAS%20in%20four%20UK%20catchments&rft.jtitle=Environmental%20pollution%20(1987)&rft.au=Price,%20Oliver%20R.&rft.date=2009-10-01&rft.volume=157&rft.issue=10&rft.spage=2610&rft.epage=2616&rft.pages=2610-2616&rft.issn=0269-7491&rft.eissn=1873-6424&rft.coden=ENVPAF&rft_id=info:doi/10.1016/j.envpol.2009.05.010&rft_dat=%3Cproquest_cross%3E34738891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777100366&rft_id=info:pmid/19524340&rft_els_id=S0269749109002383&rfr_iscdi=true