Tissue-Engineered Small-Caliber Vascular Graft Based on a Novel Biodegradable Composite Fibrin-Polylactide Scaffold
Small-caliber vascular grafts (≤5 mm) constructed from synthetic materials for coronary bypass or peripheral vascular repair below the knee have poor patency rates, while autologous vessels may not be available for harvesting. The present study aimed to create a completely autologous small-caliber v...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part A 2009-08, Vol.15 (8), p.199-1918 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1918 |
---|---|
container_issue | 8 |
container_start_page | 199 |
container_title | Tissue engineering. Part A |
container_volume | 15 |
creator | Tschoeke, Beate Flanagan, Thomas C. Koch, Sabine Harwoko, Marvi Sri Deichmann, Thorsten Ellå, Ville Sachweh, Jörg S. Kellomåki, Minna Gries, Thomas Schmitz-Rode, Thomas Jockenhoevel, Stefan |
description | Small-caliber vascular grafts (≤5 mm) constructed from synthetic materials for coronary bypass or peripheral vascular repair below the knee have poor patency rates, while autologous vessels may not be available for harvesting. The present study aimed to create a completely autologous small-caliber vascular graft by utilizing a bioabsorbable, macroporous poly(L/D)lactide 96/4 [P(L/D)LA 96/4] mesh as a support scaffold system combined with an autologous fibrin cell carrier material. A novel molding device was used to integrate a P(L/D)LA 96/4 mesh in the wall of a fibrin-based vascular graft, which was seeded with arterial smooth muscle cells (SMCs)/fibroblasts and subsequently lined with endothelial cells. The mold was connected to a bioreactor circuit for dynamic mechanical conditioning of the graft over a 21-day period. Graft cell phenotype, proliferation, extracellular matrix (ECM) content, and mechanical strength were analyzed. α-SMA–positive SMCs and fibroblasts deposited ECM proteins into the graft wall, with a significant increase in both cell number and collagen content over 21 days. A luminal endothelial cell lining was evidenced by vWf staining, while the grafts exhibited supraphysiological burst pressure (>460 mmHg) after dynamic cultivation. The results of our study demonstrated the successful production of an autologous, biodegradable small-caliber vascular graft
in vitro
, with remodeling capabilities and supraphysiological mechanical properties after 21 days in culture. The approach may be suitable for a variety of clinical applications, including coronary artery and peripheral artery bypass procedures. |
doi_str_mv | 10.1089/ten.tea.2008.0499 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733574581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20794888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-8e2ba4f9fe77681702a7b48f688ec2f840021458fa4f4e4883e2d47578b26e603</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVoyWd_QC9F9NCevJVk2ZKPzZIvCG0gaelNjO1RUJClrWQX8u-rZZcUeig9iBHDM6_QPIS85WzFme4-zRhWM8JKMKZXTHbdATnmXa2qum5-vHq5S35ETnJ-YqxlrVKH5Ih3XDRtw45JfnA5L1hdhEcXEBOO9H4C76s1eNdjot8hD4uHRK8S2JmeQy5IDBTol_gLPT13ccTHBCP0Huk6TpuY3Yz00vXJheou-mcPw-xGpPcDWBv9eEZeW_AZ3-zrKfl2efGwvq5uv17drD_fVoNUYq40ih6k7Swq1WqumADVS21brXEQVkvGBJeNtgWSKLWuUYxSNUr3osWW1afk4y53k-LPBfNsJpcH9B4CxiUbVdakSgAv5Id_koKprjygC_j-L_ApLimUX5iybC1lW8sC8R00pJhzQms2yU2Qng1nZivOFHHlgNmKM1txZebdPnjpJxz_TOxNFUDtgG0bQvAOi575P6J_A1-cp78</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>193844634</pqid></control><display><type>article</type><title>Tissue-Engineered Small-Caliber Vascular Graft Based on a Novel Biodegradable Composite Fibrin-Polylactide Scaffold</title><source>Mary Ann Liebert Online Subscription</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Tschoeke, Beate ; Flanagan, Thomas C. ; Koch, Sabine ; Harwoko, Marvi Sri ; Deichmann, Thorsten ; Ellå, Ville ; Sachweh, Jörg S. ; Kellomåki, Minna ; Gries, Thomas ; Schmitz-Rode, Thomas ; Jockenhoevel, Stefan</creator><creatorcontrib>Tschoeke, Beate ; Flanagan, Thomas C. ; Koch, Sabine ; Harwoko, Marvi Sri ; Deichmann, Thorsten ; Ellå, Ville ; Sachweh, Jörg S. ; Kellomåki, Minna ; Gries, Thomas ; Schmitz-Rode, Thomas ; Jockenhoevel, Stefan</creatorcontrib><description>Small-caliber vascular grafts (≤5 mm) constructed from synthetic materials for coronary bypass or peripheral vascular repair below the knee have poor patency rates, while autologous vessels may not be available for harvesting. The present study aimed to create a completely autologous small-caliber vascular graft by utilizing a bioabsorbable, macroporous poly(L/D)lactide 96/4 [P(L/D)LA 96/4] mesh as a support scaffold system combined with an autologous fibrin cell carrier material. A novel molding device was used to integrate a P(L/D)LA 96/4 mesh in the wall of a fibrin-based vascular graft, which was seeded with arterial smooth muscle cells (SMCs)/fibroblasts and subsequently lined with endothelial cells. The mold was connected to a bioreactor circuit for dynamic mechanical conditioning of the graft over a 21-day period. Graft cell phenotype, proliferation, extracellular matrix (ECM) content, and mechanical strength were analyzed. α-SMA–positive SMCs and fibroblasts deposited ECM proteins into the graft wall, with a significant increase in both cell number and collagen content over 21 days. A luminal endothelial cell lining was evidenced by vWf staining, while the grafts exhibited supraphysiological burst pressure (>460 mmHg) after dynamic cultivation. The results of our study demonstrated the successful production of an autologous, biodegradable small-caliber vascular graft
in vitro
, with remodeling capabilities and supraphysiological mechanical properties after 21 days in culture. The approach may be suitable for a variety of clinical applications, including coronary artery and peripheral artery bypass procedures.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2008.0499</identifier><identifier>PMID: 19125650</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Biocompatible Materials - pharmacology ; Biodegradable materials ; Biological Assay ; Biomechanical Phenomena - drug effects ; Bioreactors ; Blood Vessel Prosthesis ; Blood Vessels - cytology ; Blood Vessels - drug effects ; Blood Vessels - transplantation ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Cells, Cultured ; Cellular biology ; Fibrin - pharmacology ; Hydroxyproline - metabolism ; Immunohistochemistry ; Original Articles ; Polyesters - pharmacology ; Porosity - drug effects ; Sheep ; Skin & tissue grafts ; Staining and Labeling ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds ; Veins & arteries</subject><ispartof>Tissue engineering. Part A, 2009-08, Vol.15 (8), p.199-1918</ispartof><rights>2009, Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2009, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-8e2ba4f9fe77681702a7b48f688ec2f840021458fa4f4e4883e2d47578b26e603</citedby><cites>FETCH-LOGICAL-c472t-8e2ba4f9fe77681702a7b48f688ec2f840021458fa4f4e4883e2d47578b26e603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.liebertpub.com/doi/epdf/10.1089/ten.tea.2008.0499$$EPDF$$P50$$Gmaryannliebert$$H</linktopdf><linktohtml>$$Uhttps://www.liebertpub.com/doi/full/10.1089/ten.tea.2008.0499$$EHTML$$P50$$Gmaryannliebert$$H</linktohtml><link.rule.ids>314,780,784,3042,21723,27924,27925,55291,55303</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19125650$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tschoeke, Beate</creatorcontrib><creatorcontrib>Flanagan, Thomas C.</creatorcontrib><creatorcontrib>Koch, Sabine</creatorcontrib><creatorcontrib>Harwoko, Marvi Sri</creatorcontrib><creatorcontrib>Deichmann, Thorsten</creatorcontrib><creatorcontrib>Ellå, Ville</creatorcontrib><creatorcontrib>Sachweh, Jörg S.</creatorcontrib><creatorcontrib>Kellomåki, Minna</creatorcontrib><creatorcontrib>Gries, Thomas</creatorcontrib><creatorcontrib>Schmitz-Rode, Thomas</creatorcontrib><creatorcontrib>Jockenhoevel, Stefan</creatorcontrib><title>Tissue-Engineered Small-Caliber Vascular Graft Based on a Novel Biodegradable Composite Fibrin-Polylactide Scaffold</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>Small-caliber vascular grafts (≤5 mm) constructed from synthetic materials for coronary bypass or peripheral vascular repair below the knee have poor patency rates, while autologous vessels may not be available for harvesting. The present study aimed to create a completely autologous small-caliber vascular graft by utilizing a bioabsorbable, macroporous poly(L/D)lactide 96/4 [P(L/D)LA 96/4] mesh as a support scaffold system combined with an autologous fibrin cell carrier material. A novel molding device was used to integrate a P(L/D)LA 96/4 mesh in the wall of a fibrin-based vascular graft, which was seeded with arterial smooth muscle cells (SMCs)/fibroblasts and subsequently lined with endothelial cells. The mold was connected to a bioreactor circuit for dynamic mechanical conditioning of the graft over a 21-day period. Graft cell phenotype, proliferation, extracellular matrix (ECM) content, and mechanical strength were analyzed. α-SMA–positive SMCs and fibroblasts deposited ECM proteins into the graft wall, with a significant increase in both cell number and collagen content over 21 days. A luminal endothelial cell lining was evidenced by vWf staining, while the grafts exhibited supraphysiological burst pressure (>460 mmHg) after dynamic cultivation. The results of our study demonstrated the successful production of an autologous, biodegradable small-caliber vascular graft
in vitro
, with remodeling capabilities and supraphysiological mechanical properties after 21 days in culture. The approach may be suitable for a variety of clinical applications, including coronary artery and peripheral artery bypass procedures.</description><subject>Animals</subject><subject>Biocompatible Materials - pharmacology</subject><subject>Biodegradable materials</subject><subject>Biological Assay</subject><subject>Biomechanical Phenomena - drug effects</subject><subject>Bioreactors</subject><subject>Blood Vessel Prosthesis</subject><subject>Blood Vessels - cytology</subject><subject>Blood Vessels - drug effects</subject><subject>Blood Vessels - transplantation</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Cells, Cultured</subject><subject>Cellular biology</subject><subject>Fibrin - pharmacology</subject><subject>Hydroxyproline - metabolism</subject><subject>Immunohistochemistry</subject><subject>Original Articles</subject><subject>Polyesters - pharmacology</subject><subject>Porosity - drug effects</subject><subject>Sheep</subject><subject>Skin & tissue grafts</subject><subject>Staining and Labeling</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>Veins & arteries</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1r3DAQhkVoyWd_QC9F9NCevJVk2ZKPzZIvCG0gaelNjO1RUJClrWQX8u-rZZcUeig9iBHDM6_QPIS85WzFme4-zRhWM8JKMKZXTHbdATnmXa2qum5-vHq5S35ETnJ-YqxlrVKH5Ih3XDRtw45JfnA5L1hdhEcXEBOO9H4C76s1eNdjot8hD4uHRK8S2JmeQy5IDBTol_gLPT13ccTHBCP0Huk6TpuY3Yz00vXJheou-mcPw-xGpPcDWBv9eEZeW_AZ3-zrKfl2efGwvq5uv17drD_fVoNUYq40ih6k7Swq1WqumADVS21brXEQVkvGBJeNtgWSKLWuUYxSNUr3osWW1afk4y53k-LPBfNsJpcH9B4CxiUbVdakSgAv5Id_koKprjygC_j-L_ApLimUX5iybC1lW8sC8R00pJhzQms2yU2Qng1nZivOFHHlgNmKM1txZebdPnjpJxz_TOxNFUDtgG0bQvAOi575P6J_A1-cp78</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Tschoeke, Beate</creator><creator>Flanagan, Thomas C.</creator><creator>Koch, Sabine</creator><creator>Harwoko, Marvi Sri</creator><creator>Deichmann, Thorsten</creator><creator>Ellå, Ville</creator><creator>Sachweh, Jörg S.</creator><creator>Kellomåki, Minna</creator><creator>Gries, Thomas</creator><creator>Schmitz-Rode, Thomas</creator><creator>Jockenhoevel, Stefan</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20090801</creationdate><title>Tissue-Engineered Small-Caliber Vascular Graft Based on a Novel Biodegradable Composite Fibrin-Polylactide Scaffold</title><author>Tschoeke, Beate ; Flanagan, Thomas C. ; Koch, Sabine ; Harwoko, Marvi Sri ; Deichmann, Thorsten ; Ellå, Ville ; Sachweh, Jörg S. ; Kellomåki, Minna ; Gries, Thomas ; Schmitz-Rode, Thomas ; Jockenhoevel, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-8e2ba4f9fe77681702a7b48f688ec2f840021458fa4f4e4883e2d47578b26e603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biocompatible Materials - pharmacology</topic><topic>Biodegradable materials</topic><topic>Biological Assay</topic><topic>Biomechanical Phenomena - drug effects</topic><topic>Bioreactors</topic><topic>Blood Vessel Prosthesis</topic><topic>Blood Vessels - cytology</topic><topic>Blood Vessels - drug effects</topic><topic>Blood Vessels - transplantation</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Cells, Cultured</topic><topic>Cellular biology</topic><topic>Fibrin - pharmacology</topic><topic>Hydroxyproline - metabolism</topic><topic>Immunohistochemistry</topic><topic>Original Articles</topic><topic>Polyesters - pharmacology</topic><topic>Porosity - drug effects</topic><topic>Sheep</topic><topic>Skin & tissue grafts</topic><topic>Staining and Labeling</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tschoeke, Beate</creatorcontrib><creatorcontrib>Flanagan, Thomas C.</creatorcontrib><creatorcontrib>Koch, Sabine</creatorcontrib><creatorcontrib>Harwoko, Marvi Sri</creatorcontrib><creatorcontrib>Deichmann, Thorsten</creatorcontrib><creatorcontrib>Ellå, Ville</creatorcontrib><creatorcontrib>Sachweh, Jörg S.</creatorcontrib><creatorcontrib>Kellomåki, Minna</creatorcontrib><creatorcontrib>Gries, Thomas</creatorcontrib><creatorcontrib>Schmitz-Rode, Thomas</creatorcontrib><creatorcontrib>Jockenhoevel, Stefan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tschoeke, Beate</au><au>Flanagan, Thomas C.</au><au>Koch, Sabine</au><au>Harwoko, Marvi Sri</au><au>Deichmann, Thorsten</au><au>Ellå, Ville</au><au>Sachweh, Jörg S.</au><au>Kellomåki, Minna</au><au>Gries, Thomas</au><au>Schmitz-Rode, Thomas</au><au>Jockenhoevel, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tissue-Engineered Small-Caliber Vascular Graft Based on a Novel Biodegradable Composite Fibrin-Polylactide Scaffold</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>15</volume><issue>8</issue><spage>199</spage><epage>1918</epage><pages>199-1918</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>Small-caliber vascular grafts (≤5 mm) constructed from synthetic materials for coronary bypass or peripheral vascular repair below the knee have poor patency rates, while autologous vessels may not be available for harvesting. The present study aimed to create a completely autologous small-caliber vascular graft by utilizing a bioabsorbable, macroporous poly(L/D)lactide 96/4 [P(L/D)LA 96/4] mesh as a support scaffold system combined with an autologous fibrin cell carrier material. A novel molding device was used to integrate a P(L/D)LA 96/4 mesh in the wall of a fibrin-based vascular graft, which was seeded with arterial smooth muscle cells (SMCs)/fibroblasts and subsequently lined with endothelial cells. The mold was connected to a bioreactor circuit for dynamic mechanical conditioning of the graft over a 21-day period. Graft cell phenotype, proliferation, extracellular matrix (ECM) content, and mechanical strength were analyzed. α-SMA–positive SMCs and fibroblasts deposited ECM proteins into the graft wall, with a significant increase in both cell number and collagen content over 21 days. A luminal endothelial cell lining was evidenced by vWf staining, while the grafts exhibited supraphysiological burst pressure (>460 mmHg) after dynamic cultivation. The results of our study demonstrated the successful production of an autologous, biodegradable small-caliber vascular graft
in vitro
, with remodeling capabilities and supraphysiological mechanical properties after 21 days in culture. The approach may be suitable for a variety of clinical applications, including coronary artery and peripheral artery bypass procedures.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>19125650</pmid><doi>10.1089/ten.tea.2008.0499</doi><tpages>1720</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-3341 |
ispartof | Tissue engineering. Part A, 2009-08, Vol.15 (8), p.199-1918 |
issn | 1937-3341 1937-335X |
language | eng |
recordid | cdi_proquest_miscellaneous_733574581 |
source | Mary Ann Liebert Online Subscription; MEDLINE; Alma/SFX Local Collection |
subjects | Animals Biocompatible Materials - pharmacology Biodegradable materials Biological Assay Biomechanical Phenomena - drug effects Bioreactors Blood Vessel Prosthesis Blood Vessels - cytology Blood Vessels - drug effects Blood Vessels - transplantation Cell Proliferation - drug effects Cell Survival - drug effects Cells, Cultured Cellular biology Fibrin - pharmacology Hydroxyproline - metabolism Immunohistochemistry Original Articles Polyesters - pharmacology Porosity - drug effects Sheep Skin & tissue grafts Staining and Labeling Tissue engineering Tissue Engineering - methods Tissue Scaffolds Veins & arteries |
title | Tissue-Engineered Small-Caliber Vascular Graft Based on a Novel Biodegradable Composite Fibrin-Polylactide Scaffold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A21%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tissue-Engineered%20Small-Caliber%20Vascular%20Graft%20Based%20on%20a%20Novel%20Biodegradable%20Composite%20Fibrin-Polylactide%20Scaffold&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Tschoeke,%20Beate&rft.date=2009-08-01&rft.volume=15&rft.issue=8&rft.spage=199&rft.epage=1918&rft.pages=199-1918&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2008.0499&rft_dat=%3Cproquest_cross%3E20794888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=193844634&rft_id=info:pmid/19125650&rfr_iscdi=true |