A multisegmental cross-bridge kinetics model of the myofibril
Striated muscle is a mechanical system that develops force and generates power in serving vital activities in the body. Striated muscle is a complex biological system; a single mammalian muscle fibre contains up to hundred or even more myofibrils in parallel connected via an inter-myofibril filament...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2009-08, Vol.259 (4), p.714-726 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 726 |
---|---|
container_issue | 4 |
container_start_page | 714 |
container_title | Journal of theoretical biology |
container_volume | 259 |
creator | Stoecker, Urs Telley, Ivo A. Stüssi, Edgar Denoth, Jachen |
description | Striated muscle is a mechanical system that develops force and generates power in serving vital activities in the body. Striated muscle is a complex biological system; a single mammalian muscle fibre contains up to hundred or even more myofibrils in parallel connected via an inter-myofibril filament network. In one single myofibril thousands of sarcomeres are lined up as a series of linear motors. We recently demonstrated that half-sarcomeres (hS) in a single myofibril operate non-uniformly. We outline a mathematical framework based on cross-bridge kinetics for the simulation of the force response and length change of individual hS in a myofibril. The model describes the muscle myofibril in contraction experiments under various conditions. The myofibril is modeled as a multisegmental mechanical system of hS models, which have active and viscoelastic properties. In the first approach, a two-state cross-bridge formalism relates the hS force to the chemical kinetics of ATP hydrolysis, as first described by Huxley [1957. Muscle structure and theories of contraction. Prog. Biophys. Mol. Biol. 7, 255–318]. Two possible types of biological variability are introduced and modeled. Numerical simulations of a myofibril composed of four to eight hS show a non-uniform hS length distribution and complex internal dynamics upon activation. We demonstrate that the steady-state approximation holds only in restricted time zones during activation. Simulations of myofibril contraction experiments that reproduce the classic steady-state force–length and force–velocity relationships, strictly constrained or “clamped” in either end-held isometric or isotonic contraction conditions, reveal a small but conspicuous effect of hS dynamics on force. |
doi_str_mv | 10.1016/j.jtbi.2009.03.032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733570757</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519309001350</els_id><sourcerecordid>733570757</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-b14daecd00afc8712c59270b37be765047ece30826b17bac05d52f01d70d04513</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMozjj6B1xId65ab5KmaUEXMviCATe6Dm1yO6b2MTapMP_ejDPgTjhw4fKdA-cQckkhoUCzmyZpfGUTBlAkwIPYEZlTKESci5QekzkAY7GgBZ-RM-caCGDKs1MyC680z2k6J3f3UTe13jpcd9j7so30ODgXV6M1a4w-bY_eahd1g8E2GurIf2DUbYfaBqI9Jyd12Tq8ONwFeX98eFs-x6vXp5fl_SrWXAgfVzQ1JWoDUNY6l5RpUTAJFZcVykxAKlEjh5xlFZVVqUEYwWqgRoKBVFC-INf73M04fE3ovOqs09i2ZY_D5JTkXEiQQgaS7cnfGiPWajParhy3ioLaraYatVtN7VZTwINYMF0d4qeqQ_NnOcwUgNs9gKHkt8VROW2x12jsiNorM9j_8n8A-cR9aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733570757</pqid></control><display><type>article</type><title>A multisegmental cross-bridge kinetics model of the myofibril</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Stoecker, Urs ; Telley, Ivo A. ; Stüssi, Edgar ; Denoth, Jachen</creator><creatorcontrib>Stoecker, Urs ; Telley, Ivo A. ; Stüssi, Edgar ; Denoth, Jachen</creatorcontrib><description>Striated muscle is a mechanical system that develops force and generates power in serving vital activities in the body. Striated muscle is a complex biological system; a single mammalian muscle fibre contains up to hundred or even more myofibrils in parallel connected via an inter-myofibril filament network. In one single myofibril thousands of sarcomeres are lined up as a series of linear motors. We recently demonstrated that half-sarcomeres (hS) in a single myofibril operate non-uniformly. We outline a mathematical framework based on cross-bridge kinetics for the simulation of the force response and length change of individual hS in a myofibril. The model describes the muscle myofibril in contraction experiments under various conditions. The myofibril is modeled as a multisegmental mechanical system of hS models, which have active and viscoelastic properties. In the first approach, a two-state cross-bridge formalism relates the hS force to the chemical kinetics of ATP hydrolysis, as first described by Huxley [1957. Muscle structure and theories of contraction. Prog. Biophys. Mol. Biol. 7, 255–318]. Two possible types of biological variability are introduced and modeled. Numerical simulations of a myofibril composed of four to eight hS show a non-uniform hS length distribution and complex internal dynamics upon activation. We demonstrate that the steady-state approximation holds only in restricted time zones during activation. Simulations of myofibril contraction experiments that reproduce the classic steady-state force–length and force–velocity relationships, strictly constrained or “clamped” in either end-held isometric or isotonic contraction conditions, reveal a small but conspicuous effect of hS dynamics on force.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2009.03.032</identifier><identifier>PMID: 19348814</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Actomyosin - physiology ; Actomyosin kinetics ; Animals ; Isometric Contraction - physiology ; Models, Biological ; Muscle Contraction - physiology ; Muscle modeling ; Myofibrils - physiology ; Sarcomere dynamics ; Sarcomere length inhomogeneity ; Sarcomeres - physiology ; Skeletal muscle</subject><ispartof>Journal of theoretical biology, 2009-08, Vol.259 (4), p.714-726</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-b14daecd00afc8712c59270b37be765047ece30826b17bac05d52f01d70d04513</citedby><cites>FETCH-LOGICAL-c355t-b14daecd00afc8712c59270b37be765047ece30826b17bac05d52f01d70d04513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022519309001350$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19348814$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stoecker, Urs</creatorcontrib><creatorcontrib>Telley, Ivo A.</creatorcontrib><creatorcontrib>Stüssi, Edgar</creatorcontrib><creatorcontrib>Denoth, Jachen</creatorcontrib><title>A multisegmental cross-bridge kinetics model of the myofibril</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>Striated muscle is a mechanical system that develops force and generates power in serving vital activities in the body. Striated muscle is a complex biological system; a single mammalian muscle fibre contains up to hundred or even more myofibrils in parallel connected via an inter-myofibril filament network. In one single myofibril thousands of sarcomeres are lined up as a series of linear motors. We recently demonstrated that half-sarcomeres (hS) in a single myofibril operate non-uniformly. We outline a mathematical framework based on cross-bridge kinetics for the simulation of the force response and length change of individual hS in a myofibril. The model describes the muscle myofibril in contraction experiments under various conditions. The myofibril is modeled as a multisegmental mechanical system of hS models, which have active and viscoelastic properties. In the first approach, a two-state cross-bridge formalism relates the hS force to the chemical kinetics of ATP hydrolysis, as first described by Huxley [1957. Muscle structure and theories of contraction. Prog. Biophys. Mol. Biol. 7, 255–318]. Two possible types of biological variability are introduced and modeled. Numerical simulations of a myofibril composed of four to eight hS show a non-uniform hS length distribution and complex internal dynamics upon activation. We demonstrate that the steady-state approximation holds only in restricted time zones during activation. Simulations of myofibril contraction experiments that reproduce the classic steady-state force–length and force–velocity relationships, strictly constrained or “clamped” in either end-held isometric or isotonic contraction conditions, reveal a small but conspicuous effect of hS dynamics on force.</description><subject>Actomyosin - physiology</subject><subject>Actomyosin kinetics</subject><subject>Animals</subject><subject>Isometric Contraction - physiology</subject><subject>Models, Biological</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle modeling</subject><subject>Myofibrils - physiology</subject><subject>Sarcomere dynamics</subject><subject>Sarcomere length inhomogeneity</subject><subject>Sarcomeres - physiology</subject><subject>Skeletal muscle</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEtLxDAUhYMozjj6B1xId65ab5KmaUEXMviCATe6Dm1yO6b2MTapMP_ejDPgTjhw4fKdA-cQckkhoUCzmyZpfGUTBlAkwIPYEZlTKESci5QekzkAY7GgBZ-RM-caCGDKs1MyC680z2k6J3f3UTe13jpcd9j7so30ODgXV6M1a4w-bY_eahd1g8E2GurIf2DUbYfaBqI9Jyd12Tq8ONwFeX98eFs-x6vXp5fl_SrWXAgfVzQ1JWoDUNY6l5RpUTAJFZcVykxAKlEjh5xlFZVVqUEYwWqgRoKBVFC-INf73M04fE3ovOqs09i2ZY_D5JTkXEiQQgaS7cnfGiPWajParhy3ioLaraYatVtN7VZTwINYMF0d4qeqQ_NnOcwUgNs9gKHkt8VROW2x12jsiNorM9j_8n8A-cR9aA</recordid><startdate>20090821</startdate><enddate>20090821</enddate><creator>Stoecker, Urs</creator><creator>Telley, Ivo A.</creator><creator>Stüssi, Edgar</creator><creator>Denoth, Jachen</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090821</creationdate><title>A multisegmental cross-bridge kinetics model of the myofibril</title><author>Stoecker, Urs ; Telley, Ivo A. ; Stüssi, Edgar ; Denoth, Jachen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-b14daecd00afc8712c59270b37be765047ece30826b17bac05d52f01d70d04513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Actomyosin - physiology</topic><topic>Actomyosin kinetics</topic><topic>Animals</topic><topic>Isometric Contraction - physiology</topic><topic>Models, Biological</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle modeling</topic><topic>Myofibrils - physiology</topic><topic>Sarcomere dynamics</topic><topic>Sarcomere length inhomogeneity</topic><topic>Sarcomeres - physiology</topic><topic>Skeletal muscle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stoecker, Urs</creatorcontrib><creatorcontrib>Telley, Ivo A.</creatorcontrib><creatorcontrib>Stüssi, Edgar</creatorcontrib><creatorcontrib>Denoth, Jachen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoecker, Urs</au><au>Telley, Ivo A.</au><au>Stüssi, Edgar</au><au>Denoth, Jachen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multisegmental cross-bridge kinetics model of the myofibril</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2009-08-21</date><risdate>2009</risdate><volume>259</volume><issue>4</issue><spage>714</spage><epage>726</epage><pages>714-726</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>Striated muscle is a mechanical system that develops force and generates power in serving vital activities in the body. Striated muscle is a complex biological system; a single mammalian muscle fibre contains up to hundred or even more myofibrils in parallel connected via an inter-myofibril filament network. In one single myofibril thousands of sarcomeres are lined up as a series of linear motors. We recently demonstrated that half-sarcomeres (hS) in a single myofibril operate non-uniformly. We outline a mathematical framework based on cross-bridge kinetics for the simulation of the force response and length change of individual hS in a myofibril. The model describes the muscle myofibril in contraction experiments under various conditions. The myofibril is modeled as a multisegmental mechanical system of hS models, which have active and viscoelastic properties. In the first approach, a two-state cross-bridge formalism relates the hS force to the chemical kinetics of ATP hydrolysis, as first described by Huxley [1957. Muscle structure and theories of contraction. Prog. Biophys. Mol. Biol. 7, 255–318]. Two possible types of biological variability are introduced and modeled. Numerical simulations of a myofibril composed of four to eight hS show a non-uniform hS length distribution and complex internal dynamics upon activation. We demonstrate that the steady-state approximation holds only in restricted time zones during activation. Simulations of myofibril contraction experiments that reproduce the classic steady-state force–length and force–velocity relationships, strictly constrained or “clamped” in either end-held isometric or isotonic contraction conditions, reveal a small but conspicuous effect of hS dynamics on force.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19348814</pmid><doi>10.1016/j.jtbi.2009.03.032</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2009-08, Vol.259 (4), p.714-726 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_proquest_miscellaneous_733570757 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Actomyosin - physiology Actomyosin kinetics Animals Isometric Contraction - physiology Models, Biological Muscle Contraction - physiology Muscle modeling Myofibrils - physiology Sarcomere dynamics Sarcomere length inhomogeneity Sarcomeres - physiology Skeletal muscle |
title | A multisegmental cross-bridge kinetics model of the myofibril |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multisegmental%20cross-bridge%20kinetics%20model%20of%20the%20myofibril&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Stoecker,%20Urs&rft.date=2009-08-21&rft.volume=259&rft.issue=4&rft.spage=714&rft.epage=726&rft.pages=714-726&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2009.03.032&rft_dat=%3Cproquest_cross%3E733570757%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733570757&rft_id=info:pmid/19348814&rft_els_id=S0022519309001350&rfr_iscdi=true |