A Kalman filter algorithm and monitoring apparatus for at-line control of fractional protein precipitation

Downstream processing operations are often carried out blind in the process timescale since product monitoring on‐line is not common. Knowledge of the location and concentration of the product and key contaminants is complementary to other process information for process development and, if availabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 1997-01, Vol.53 (1), p.58-70
Hauptverfasser: Holwill, Ian J., Chard, Stephen J., Flanagan, Michael T., Hoare, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 70
container_issue 1
container_start_page 58
container_title Biotechnology and bioengineering
container_volume 53
creator Holwill, Ian J.
Chard, Stephen J.
Flanagan, Michael T.
Hoare, Michael
description Downstream processing operations are often carried out blind in the process timescale since product monitoring on‐line is not common. Knowledge of the location and concentration of the product and key contaminants is complementary to other process information for process development and, if available on‐line in conjunction with a suitable model, control. This article sets out to demonstrate a model describing a two‐cut fractional protein precipitation process and how this may be used for control of the process to maximize yield in the face of variable process stream conditions. Estimation of the model parameters is achieved by means of data‐fitting by least squares and in comparison prediction by a Kalman filter algorithm. A description and error analysis of equipment for at‐line monitoring of the soluble product in a pilot plant environment is presented which includes a micro‐centrifuge necessary to clarify small volumes of sample prior to analysis. Finally, an account of the successful implementation of this equipment and the Kalman filter algorithm for control at bench scale is given where conditions in the process stream are deliberately disturbed to test the control operation. © 1997 John Wiley & Sons, Inc.
doi_str_mv 10.1002/(SICI)1097-0290(19970105)53:1<58::AID-BIT9>3.0.CO;2-Y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733539087</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>15903105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5299-c34e115943508981726b79a6a4141977f30e821926e5f12d7eafef6d7340e42c3</originalsourceid><addsrcrecordid>eNqNkc1uEzEURkcIRNPCKyAvELSLCf4Z2-NAkdIASURLFhShdnPlTjyti2cm2I6gb4-HhnQBAlZX1_r86VydLDskeEgwpi_2P84n8wOClcwxVXifKCUxwfyAsxF5xcvRaDx_kx_NT9VrNsTDyeIlzc_uZYPtj_vZAGMscsYV3cl2Q7hOqyyFeJjtkFJQpQQeZNdj9F67Rreoti4aj7S77LyNVw3S7RI1XWtj2ttLpFcr7XVcB1R3KRZzZ1uDqq6NvnOoq1HtdRVt12qHVr6LxrZpmsqubNT9-6PsQa1dMI83cy_79O7t6WSWHy-m88n4OK94gsorVhhCuCoYx6UqiaTiQiotdEEKoqSsGTYlJYoKw2tCl9Lo2tRiKVmBTUErtpc9v-1NFF_XJkRobKiMc7o13TqAZIwzhUuZks_-mkwUXHBZ_k8QsySHbW-qfBeCNzWsvG20vwGCofcK0HuF3hL0luCXV-AMCPASIHmF3iswwDBZAIWz1PtkA7C-aMzyrnUjMgWebgI6VNolF21lwzZHeX8LveP7Zp25-Q3uX2x_QPu5p978tteGaL5ve7X_AkIyyeHzhymc89ns5PxoCifsB9zW2Sg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>15903105</pqid></control><display><type>article</type><title>A Kalman filter algorithm and monitoring apparatus for at-line control of fractional protein precipitation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Holwill, Ian J. ; Chard, Stephen J. ; Flanagan, Michael T. ; Hoare, Michael</creator><creatorcontrib>Holwill, Ian J. ; Chard, Stephen J. ; Flanagan, Michael T. ; Hoare, Michael</creatorcontrib><description>Downstream processing operations are often carried out blind in the process timescale since product monitoring on‐line is not common. Knowledge of the location and concentration of the product and key contaminants is complementary to other process information for process development and, if available on‐line in conjunction with a suitable model, control. This article sets out to demonstrate a model describing a two‐cut fractional protein precipitation process and how this may be used for control of the process to maximize yield in the face of variable process stream conditions. Estimation of the model parameters is achieved by means of data‐fitting by least squares and in comparison prediction by a Kalman filter algorithm. A description and error analysis of equipment for at‐line monitoring of the soluble product in a pilot plant environment is presented which includes a micro‐centrifuge necessary to clarify small volumes of sample prior to analysis. Finally, an account of the successful implementation of this equipment and the Kalman filter algorithm for control at bench scale is given where conditions in the process stream are deliberately disturbed to test the control operation. © 1997 John Wiley &amp; Sons, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/(SICI)1097-0290(19970105)53:1&lt;58::AID-BIT9&gt;3.0.CO;2-Y</identifier><identifier>PMID: 18629960</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Analytical, structural and metabolic biochemistry ; Biological and medical sciences ; Biotechnology ; control ; fractional precipitation ; Fundamental and applied biological sciences. Psychology ; General aspects, investigation methods ; Methods. Procedures. Technologies ; monitoring ; Others ; protein ; Proteins ; Various methods and equipments</subject><ispartof>Biotechnology and bioengineering, 1997-01, Vol.53 (1), p.58-70</ispartof><rights>Copyright © 1997 John Wiley &amp; Sons, Inc.</rights><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5299-c34e115943508981726b79a6a4141977f30e821926e5f12d7eafef6d7340e42c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291097-0290%2819970105%2953%3A1%3C58%3A%3AAID-BIT9%3E3.0.CO%3B2-Y$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291097-0290%2819970105%2953%3A1%3C58%3A%3AAID-BIT9%3E3.0.CO%3B2-Y$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2515952$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18629960$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holwill, Ian J.</creatorcontrib><creatorcontrib>Chard, Stephen J.</creatorcontrib><creatorcontrib>Flanagan, Michael T.</creatorcontrib><creatorcontrib>Hoare, Michael</creatorcontrib><title>A Kalman filter algorithm and monitoring apparatus for at-line control of fractional protein precipitation</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Downstream processing operations are often carried out blind in the process timescale since product monitoring on‐line is not common. Knowledge of the location and concentration of the product and key contaminants is complementary to other process information for process development and, if available on‐line in conjunction with a suitable model, control. This article sets out to demonstrate a model describing a two‐cut fractional protein precipitation process and how this may be used for control of the process to maximize yield in the face of variable process stream conditions. Estimation of the model parameters is achieved by means of data‐fitting by least squares and in comparison prediction by a Kalman filter algorithm. A description and error analysis of equipment for at‐line monitoring of the soluble product in a pilot plant environment is presented which includes a micro‐centrifuge necessary to clarify small volumes of sample prior to analysis. Finally, an account of the successful implementation of this equipment and the Kalman filter algorithm for control at bench scale is given where conditions in the process stream are deliberately disturbed to test the control operation. © 1997 John Wiley &amp; Sons, Inc.</description><subject>Analytical, structural and metabolic biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>control</subject><subject>fractional precipitation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects, investigation methods</subject><subject>Methods. Procedures. Technologies</subject><subject>monitoring</subject><subject>Others</subject><subject>protein</subject><subject>Proteins</subject><subject>Various methods and equipments</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqNkc1uEzEURkcIRNPCKyAvELSLCf4Z2-NAkdIASURLFhShdnPlTjyti2cm2I6gb4-HhnQBAlZX1_r86VydLDskeEgwpi_2P84n8wOClcwxVXifKCUxwfyAsxF5xcvRaDx_kx_NT9VrNsTDyeIlzc_uZYPtj_vZAGMscsYV3cl2Q7hOqyyFeJjtkFJQpQQeZNdj9F67Rreoti4aj7S77LyNVw3S7RI1XWtj2ttLpFcr7XVcB1R3KRZzZ1uDqq6NvnOoq1HtdRVt12qHVr6LxrZpmsqubNT9-6PsQa1dMI83cy_79O7t6WSWHy-m88n4OK94gsorVhhCuCoYx6UqiaTiQiotdEEKoqSsGTYlJYoKw2tCl9Lo2tRiKVmBTUErtpc9v-1NFF_XJkRobKiMc7o13TqAZIwzhUuZks_-mkwUXHBZ_k8QsySHbW-qfBeCNzWsvG20vwGCofcK0HuF3hL0luCXV-AMCPASIHmF3iswwDBZAIWz1PtkA7C-aMzyrnUjMgWebgI6VNolF21lwzZHeX8LveP7Zp25-Q3uX2x_QPu5p978tteGaL5ve7X_AkIyyeHzhymc89ns5PxoCifsB9zW2Sg</recordid><startdate>19970105</startdate><enddate>19970105</enddate><creator>Holwill, Ian J.</creator><creator>Chard, Stephen J.</creator><creator>Flanagan, Michael T.</creator><creator>Hoare, Michael</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19970105</creationdate><title>A Kalman filter algorithm and monitoring apparatus for at-line control of fractional protein precipitation</title><author>Holwill, Ian J. ; Chard, Stephen J. ; Flanagan, Michael T. ; Hoare, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5299-c34e115943508981726b79a6a4141977f30e821926e5f12d7eafef6d7340e42c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Analytical, structural and metabolic biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>control</topic><topic>fractional precipitation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects, investigation methods</topic><topic>Methods. Procedures. Technologies</topic><topic>monitoring</topic><topic>Others</topic><topic>protein</topic><topic>Proteins</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holwill, Ian J.</creatorcontrib><creatorcontrib>Chard, Stephen J.</creatorcontrib><creatorcontrib>Flanagan, Michael T.</creatorcontrib><creatorcontrib>Hoare, Michael</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holwill, Ian J.</au><au>Chard, Stephen J.</au><au>Flanagan, Michael T.</au><au>Hoare, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Kalman filter algorithm and monitoring apparatus for at-line control of fractional protein precipitation</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>1997-01-05</date><risdate>1997</risdate><volume>53</volume><issue>1</issue><spage>58</spage><epage>70</epage><pages>58-70</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Downstream processing operations are often carried out blind in the process timescale since product monitoring on‐line is not common. Knowledge of the location and concentration of the product and key contaminants is complementary to other process information for process development and, if available on‐line in conjunction with a suitable model, control. This article sets out to demonstrate a model describing a two‐cut fractional protein precipitation process and how this may be used for control of the process to maximize yield in the face of variable process stream conditions. Estimation of the model parameters is achieved by means of data‐fitting by least squares and in comparison prediction by a Kalman filter algorithm. A description and error analysis of equipment for at‐line monitoring of the soluble product in a pilot plant environment is presented which includes a micro‐centrifuge necessary to clarify small volumes of sample prior to analysis. Finally, an account of the successful implementation of this equipment and the Kalman filter algorithm for control at bench scale is given where conditions in the process stream are deliberately disturbed to test the control operation. © 1997 John Wiley &amp; Sons, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>18629960</pmid><doi>10.1002/(SICI)1097-0290(19970105)53:1&lt;58::AID-BIT9&gt;3.0.CO;2-Y</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 1997-01, Vol.53 (1), p.58-70
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_733539087
source Wiley Online Library Journals Frontfile Complete
subjects Analytical, structural and metabolic biochemistry
Biological and medical sciences
Biotechnology
control
fractional precipitation
Fundamental and applied biological sciences. Psychology
General aspects, investigation methods
Methods. Procedures. Technologies
monitoring
Others
protein
Proteins
Various methods and equipments
title A Kalman filter algorithm and monitoring apparatus for at-line control of fractional protein precipitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A58%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Kalman%20filter%20algorithm%20and%20monitoring%20apparatus%20for%20at-line%20control%20of%20fractional%20protein%20precipitation&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Holwill,%20Ian%20J.&rft.date=1997-01-05&rft.volume=53&rft.issue=1&rft.spage=58&rft.epage=70&rft.pages=58-70&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/(SICI)1097-0290(19970105)53:1%3C58::AID-BIT9%3E3.0.CO;2-Y&rft_dat=%3Cproquest_cross%3E15903105%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=15903105&rft_id=info:pmid/18629960&rfr_iscdi=true