Widespread existence of uncorrelated probe intensities from within the same probeset on Affymetrix GeneChips

We have developed a computational pipeline to analyse large surveys of A ymetrix GeneChips, for example NCBI’s Gene Expression Omnibus. GEO samples data for many organisms, tissues and phenotypes. Because of this experimental diversity, any observed correlations between probe intensities can be asso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of integrative bioinformatics 2008-06, Vol.5 (2), p.104-116
Hauptverfasser: Sanchez-Graillet, Olivia, Rowsell, Joanna, Langdon, William B., Stalteri, Maria, Arteaga-Salas, Jose M., Upton, Graham J. G., Harrison, Andrew P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 116
container_issue 2
container_start_page 104
container_title Journal of integrative bioinformatics
container_volume 5
creator Sanchez-Graillet, Olivia
Rowsell, Joanna
Langdon, William B.
Stalteri, Maria
Arteaga-Salas, Jose M.
Upton, Graham J. G.
Harrison, Andrew P.
description We have developed a computational pipeline to analyse large surveys of A ymetrix GeneChips, for example NCBI’s Gene Expression Omnibus. GEO samples data for many organisms, tissues and phenotypes. Because of this experimental diversity, any observed correlations between probe intensities can be associated either with biology that is robust, such as common co-expression, or with systematic biases associated with the GeneChip technology. Our bioinformatics pipeline integrates the mapping of probes to exons, quality control checks on each GeneChip which identifies flaws in hybridization quality, and the mining of correlations in intensities between groups of probes. The output from our pipeline has enabled us to identify systematic biases in GeneChip data. We are also able to use the pipeline as a discovery tool for biology. We have discovered that in the majority of cases, A ymetrix probesets on Human GeneChips do not measure one unique block of transcription. Instead we see numerous examples of outlier probes. Our study has also identified that in a number of probesets the mismatch probes are an informative diagnostic of expression, rather than providing a measure of background contamination. We report evidence for systematic biases in GeneChip technology associated with probe-probe interactions. We also see signatures associated with post-transcriptional processing of RNA, such as alternative polyadenylation.
doi_str_mv 10.2390/biecoll-jib-2008-98
format Article
fullrecord <record><control><sourceid>proquest_walte</sourceid><recordid>TN_cdi_proquest_miscellaneous_733537700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733537700</sourcerecordid><originalsourceid>FETCH-LOGICAL-p174t-8dca7cd9cd7c25e49683b143549dd2e19f3efa4457cd27223b21a7bf841cbcaa3</originalsourceid><addsrcrecordid>eNotkE1LAzEQhoMgWGp_gZfcPK1uPrbZ3CxFq1DwongM2WTWpuxm1yRL239vSjuXGXgfhpcHoQdSPlEmy-fGgRm6rti7pqBlWReyvkEzsiSs4BVZ3qFFjPsyD5O1FOUMdT_OQhwDaIvh6GICbwAPLZ68GUKATieweAxDA9j5nEaXHETchqHHB5d2zuO0Axx1DxcsQsKDx6u2PfWQgjviDXhY79wY79Ftq7sIi-ueo--316_1e7H93HysV9tiJIKnorZGC2OlscLQCrhc1qwhnFVcWkuByJZBqzmvMkQFpayhRIumrTkxjdGazdHj5W8u9DdBTKp30UDXaQ_DFJVgrGJCZAtz9HIhD7pLECz8humUD7UfpuBzR0VKdTarrmZVNqvOZpWsK0pKzv4BrvR2PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733537700</pqid></control><display><type>article</type><title>Widespread existence of uncorrelated probe intensities from within the same probeset on Affymetrix GeneChips</title><source>DOAJ Directory of Open Access Journals</source><source>Walter De Gruyter: Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sanchez-Graillet, Olivia ; Rowsell, Joanna ; Langdon, William B. ; Stalteri, Maria ; Arteaga-Salas, Jose M. ; Upton, Graham J. G. ; Harrison, Andrew P.</creator><creatorcontrib>Sanchez-Graillet, Olivia ; Rowsell, Joanna ; Langdon, William B. ; Stalteri, Maria ; Arteaga-Salas, Jose M. ; Upton, Graham J. G. ; Harrison, Andrew P.</creatorcontrib><description>We have developed a computational pipeline to analyse large surveys of A ymetrix GeneChips, for example NCBI’s Gene Expression Omnibus. GEO samples data for many organisms, tissues and phenotypes. Because of this experimental diversity, any observed correlations between probe intensities can be associated either with biology that is robust, such as common co-expression, or with systematic biases associated with the GeneChip technology. Our bioinformatics pipeline integrates the mapping of probes to exons, quality control checks on each GeneChip which identifies flaws in hybridization quality, and the mining of correlations in intensities between groups of probes. The output from our pipeline has enabled us to identify systematic biases in GeneChip data. We are also able to use the pipeline as a discovery tool for biology. We have discovered that in the majority of cases, A ymetrix probesets on Human GeneChips do not measure one unique block of transcription. Instead we see numerous examples of outlier probes. Our study has also identified that in a number of probesets the mismatch probes are an informative diagnostic of expression, rather than providing a measure of background contamination. We report evidence for systematic biases in GeneChip technology associated with probe-probe interactions. We also see signatures associated with post-transcriptional processing of RNA, such as alternative polyadenylation.</description><identifier>EISSN: 1613-4516</identifier><identifier>DOI: 10.2390/biecoll-jib-2008-98</identifier><language>eng</language><publisher>IMBio e.V</publisher><ispartof>Journal of integrative bioinformatics, 2008-06, Vol.5 (2), p.104-116</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.2390/biecoll-jib-2008-98/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.2390/biecoll-jib-2008-98/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,27924,27925,67158,68942</link.rule.ids></links><search><creatorcontrib>Sanchez-Graillet, Olivia</creatorcontrib><creatorcontrib>Rowsell, Joanna</creatorcontrib><creatorcontrib>Langdon, William B.</creatorcontrib><creatorcontrib>Stalteri, Maria</creatorcontrib><creatorcontrib>Arteaga-Salas, Jose M.</creatorcontrib><creatorcontrib>Upton, Graham J. G.</creatorcontrib><creatorcontrib>Harrison, Andrew P.</creatorcontrib><title>Widespread existence of uncorrelated probe intensities from within the same probeset on Affymetrix GeneChips</title><title>Journal of integrative bioinformatics</title><description>We have developed a computational pipeline to analyse large surveys of A ymetrix GeneChips, for example NCBI’s Gene Expression Omnibus. GEO samples data for many organisms, tissues and phenotypes. Because of this experimental diversity, any observed correlations between probe intensities can be associated either with biology that is robust, such as common co-expression, or with systematic biases associated with the GeneChip technology. Our bioinformatics pipeline integrates the mapping of probes to exons, quality control checks on each GeneChip which identifies flaws in hybridization quality, and the mining of correlations in intensities between groups of probes. The output from our pipeline has enabled us to identify systematic biases in GeneChip data. We are also able to use the pipeline as a discovery tool for biology. We have discovered that in the majority of cases, A ymetrix probesets on Human GeneChips do not measure one unique block of transcription. Instead we see numerous examples of outlier probes. Our study has also identified that in a number of probesets the mismatch probes are an informative diagnostic of expression, rather than providing a measure of background contamination. We report evidence for systematic biases in GeneChip technology associated with probe-probe interactions. We also see signatures associated with post-transcriptional processing of RNA, such as alternative polyadenylation.</description><issn>1613-4516</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEQhoMgWGp_gZfcPK1uPrbZ3CxFq1DwongM2WTWpuxm1yRL239vSjuXGXgfhpcHoQdSPlEmy-fGgRm6rti7pqBlWReyvkEzsiSs4BVZ3qFFjPsyD5O1FOUMdT_OQhwDaIvh6GICbwAPLZ68GUKATieweAxDA9j5nEaXHETchqHHB5d2zuO0Axx1DxcsQsKDx6u2PfWQgjviDXhY79wY79Ftq7sIi-ueo--316_1e7H93HysV9tiJIKnorZGC2OlscLQCrhc1qwhnFVcWkuByJZBqzmvMkQFpayhRIumrTkxjdGazdHj5W8u9DdBTKp30UDXaQ_DFJVgrGJCZAtz9HIhD7pLECz8humUD7UfpuBzR0VKdTarrmZVNqvOZpWsK0pKzv4BrvR2PA</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Sanchez-Graillet, Olivia</creator><creator>Rowsell, Joanna</creator><creator>Langdon, William B.</creator><creator>Stalteri, Maria</creator><creator>Arteaga-Salas, Jose M.</creator><creator>Upton, Graham J. G.</creator><creator>Harrison, Andrew P.</creator><general>IMBio e.V</general><scope>7X8</scope></search><sort><creationdate>20080601</creationdate><title>Widespread existence of uncorrelated probe intensities from within the same probeset on Affymetrix GeneChips</title><author>Sanchez-Graillet, Olivia ; Rowsell, Joanna ; Langdon, William B. ; Stalteri, Maria ; Arteaga-Salas, Jose M. ; Upton, Graham J. G. ; Harrison, Andrew P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p174t-8dca7cd9cd7c25e49683b143549dd2e19f3efa4457cd27223b21a7bf841cbcaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sanchez-Graillet, Olivia</creatorcontrib><creatorcontrib>Rowsell, Joanna</creatorcontrib><creatorcontrib>Langdon, William B.</creatorcontrib><creatorcontrib>Stalteri, Maria</creatorcontrib><creatorcontrib>Arteaga-Salas, Jose M.</creatorcontrib><creatorcontrib>Upton, Graham J. G.</creatorcontrib><creatorcontrib>Harrison, Andrew P.</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>Journal of integrative bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sanchez-Graillet, Olivia</au><au>Rowsell, Joanna</au><au>Langdon, William B.</au><au>Stalteri, Maria</au><au>Arteaga-Salas, Jose M.</au><au>Upton, Graham J. G.</au><au>Harrison, Andrew P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Widespread existence of uncorrelated probe intensities from within the same probeset on Affymetrix GeneChips</atitle><jtitle>Journal of integrative bioinformatics</jtitle><date>2008-06-01</date><risdate>2008</risdate><volume>5</volume><issue>2</issue><spage>104</spage><epage>116</epage><pages>104-116</pages><eissn>1613-4516</eissn><abstract>We have developed a computational pipeline to analyse large surveys of A ymetrix GeneChips, for example NCBI’s Gene Expression Omnibus. GEO samples data for many organisms, tissues and phenotypes. Because of this experimental diversity, any observed correlations between probe intensities can be associated either with biology that is robust, such as common co-expression, or with systematic biases associated with the GeneChip technology. Our bioinformatics pipeline integrates the mapping of probes to exons, quality control checks on each GeneChip which identifies flaws in hybridization quality, and the mining of correlations in intensities between groups of probes. The output from our pipeline has enabled us to identify systematic biases in GeneChip data. We are also able to use the pipeline as a discovery tool for biology. We have discovered that in the majority of cases, A ymetrix probesets on Human GeneChips do not measure one unique block of transcription. Instead we see numerous examples of outlier probes. Our study has also identified that in a number of probesets the mismatch probes are an informative diagnostic of expression, rather than providing a measure of background contamination. We report evidence for systematic biases in GeneChip technology associated with probe-probe interactions. We also see signatures associated with post-transcriptional processing of RNA, such as alternative polyadenylation.</abstract><pub>IMBio e.V</pub><doi>10.2390/biecoll-jib-2008-98</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1613-4516
ispartof Journal of integrative bioinformatics, 2008-06, Vol.5 (2), p.104-116
issn 1613-4516
language eng
recordid cdi_proquest_miscellaneous_733537700
source DOAJ Directory of Open Access Journals; Walter De Gruyter: Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Widespread existence of uncorrelated probe intensities from within the same probeset on Affymetrix GeneChips
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_walte&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Widespread%20existence%20of%20uncorrelated%20probe%20intensities%20from%20within%20the%20same%20probeset%20on%20Affymetrix%20GeneChips&rft.jtitle=Journal%20of%20integrative%20bioinformatics&rft.au=Sanchez-Graillet,%20Olivia&rft.date=2008-06-01&rft.volume=5&rft.issue=2&rft.spage=104&rft.epage=116&rft.pages=104-116&rft.eissn=1613-4516&rft_id=info:doi/10.2390/biecoll-jib-2008-98&rft_dat=%3Cproquest_walte%3E733537700%3C/proquest_walte%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733537700&rft_id=info:pmid/&rfr_iscdi=true