Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4

Demethylation at distinct lysine residues in histone H3 by lysine-specific demethylase 1 (LSD1) causes either gene repression or activation. As a component of co-repressor complexes, LSD1 contributes to target gene repression by removing mono- and dimethyl marks from lysine 4 of histone H3 (H3K4). I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2010-04, Vol.464 (7289), p.792-796
Hauptverfasser: Metzger, Eric, Imhof, Axel, Patel, Dharmeshkumar, Kahl, Philip, Hoffmeyer, Katrin, Friedrichs, Nicolaus, Müller, Judith M, Greschik, Holger, Kirfel, Jutta, Ji, Sujuan, Kunowska, Natalia, Beisenherz-Huss, Christian, Günther, Thomas, Buettner, Reinhard, Schüle, Roland
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 796
container_issue 7289
container_start_page 792
container_title Nature (London)
container_volume 464
creator Metzger, Eric
Imhof, Axel
Patel, Dharmeshkumar
Kahl, Philip
Hoffmeyer, Katrin
Friedrichs, Nicolaus
Müller, Judith M
Greschik, Holger
Kirfel, Jutta
Ji, Sujuan
Kunowska, Natalia
Beisenherz-Huss, Christian
Günther, Thomas
Buettner, Reinhard
Schüle, Roland
description Demethylation at distinct lysine residues in histone H3 by lysine-specific demethylase 1 (LSD1) causes either gene repression or activation. As a component of co-repressor complexes, LSD1 contributes to target gene repression by removing mono- and dimethyl marks from lysine 4 of histone H3 (H3K4). In contrast, during androgen receptor (AR)-activated gene expression, LSD1 removes mono- and dimethyl marks from lysine 9 of histone H3 (H3K9). Yet, the mechanisms that control this dual specificity of demethylation are unknown. Here we show that phosphorylation of histone H3 at threonine 6 (H3T6) by protein kinase C beta I (PKCbeta(I), also known as PRKCbeta) is the key event that prevents LSD1 from demethylating H3K4 during AR-dependent gene activation. In vitro, histone H3 peptides methylated at lysine 4 and phosphorylated at threonine 6 are no longer LSD1 substrates. In vivo, PKCbeta(I) co-localizes with AR and LSD1 on target gene promoters and phosphorylates H3T6 after androgen-induced gene expression. RNA interference (RNAi)-mediated knockdown of PKCbeta(I) abrogates H3T6 phosphorylation, enhances demethylation at H3K4, and inhibits AR-dependent transcription. Activation of PKCbeta(I) requires androgen-dependent recruitment of the gatekeeper kinase protein kinase C (PKC)-related kinase 1 (PRK1). Notably, increased levels of PKCbeta(I) and phosphorylated H3T6 (H3T6ph) positively correlate with high Gleason scores of prostate carcinomas, and inhibition of PKCbeta(I) blocks AR-induced tumour cell proliferation in vitro and cancer progression of tumour xenografts in vivo. Together, our data establish that androgen-dependent kinase signalling leads to the writing of the new chromatin mark H3T6ph, which in consequence prevents removal of active methyl marks from H3K4 during AR-stimulated gene expression.
doi_str_mv 10.1038/nature08839
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_733537266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733537266</sourcerecordid><originalsourceid>FETCH-LOGICAL-p550-261848a7b49e31f9c3d8952438026eaadd961a3ff2f6bff13375c5b59994ec473</originalsourceid><addsrcrecordid>eNpNkDtPwzAYRS0kREthYkfegCFg-_NzRBXQqpXokD1yElsJSuIQO0P_PUi0EtNdzjnDReiOkmdKQL8MNs2TI1qDuUBLypXMuNRqga5j_CKECKr4FVowwphWhixRfmhCHJswHTub2jDg4HHTxhQGhzeQS1we8WG3Ll2yj9snXIUhTaGLuHa9S81ZsumftOM36NLbLrrb065Q_v6WrzfZ_vNju37dZ6MQJGOSaq6tKrlxQL2poNZGMA6aMOmsrWsjqQXvmZel9xRAiUqUwhjDXcUVrNDDX3acwvfsYir6Nlau6-zgwhwLBSBAMSl_yfsTOZe9q4txans7HYvzD_ADeGNcUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733537266</pqid></control><display><type>article</type><title>Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Metzger, Eric ; Imhof, Axel ; Patel, Dharmeshkumar ; Kahl, Philip ; Hoffmeyer, Katrin ; Friedrichs, Nicolaus ; Müller, Judith M ; Greschik, Holger ; Kirfel, Jutta ; Ji, Sujuan ; Kunowska, Natalia ; Beisenherz-Huss, Christian ; Günther, Thomas ; Buettner, Reinhard ; Schüle, Roland</creator><creatorcontrib>Metzger, Eric ; Imhof, Axel ; Patel, Dharmeshkumar ; Kahl, Philip ; Hoffmeyer, Katrin ; Friedrichs, Nicolaus ; Müller, Judith M ; Greschik, Holger ; Kirfel, Jutta ; Ji, Sujuan ; Kunowska, Natalia ; Beisenherz-Huss, Christian ; Günther, Thomas ; Buettner, Reinhard ; Schüle, Roland</creatorcontrib><description>Demethylation at distinct lysine residues in histone H3 by lysine-specific demethylase 1 (LSD1) causes either gene repression or activation. As a component of co-repressor complexes, LSD1 contributes to target gene repression by removing mono- and dimethyl marks from lysine 4 of histone H3 (H3K4). In contrast, during androgen receptor (AR)-activated gene expression, LSD1 removes mono- and dimethyl marks from lysine 9 of histone H3 (H3K9). Yet, the mechanisms that control this dual specificity of demethylation are unknown. Here we show that phosphorylation of histone H3 at threonine 6 (H3T6) by protein kinase C beta I (PKCbeta(I), also known as PRKCbeta) is the key event that prevents LSD1 from demethylating H3K4 during AR-dependent gene activation. In vitro, histone H3 peptides methylated at lysine 4 and phosphorylated at threonine 6 are no longer LSD1 substrates. In vivo, PKCbeta(I) co-localizes with AR and LSD1 on target gene promoters and phosphorylates H3T6 after androgen-induced gene expression. RNA interference (RNAi)-mediated knockdown of PKCbeta(I) abrogates H3T6 phosphorylation, enhances demethylation at H3K4, and inhibits AR-dependent transcription. Activation of PKCbeta(I) requires androgen-dependent recruitment of the gatekeeper kinase protein kinase C (PKC)-related kinase 1 (PRK1). Notably, increased levels of PKCbeta(I) and phosphorylated H3T6 (H3T6ph) positively correlate with high Gleason scores of prostate carcinomas, and inhibition of PKCbeta(I) blocks AR-induced tumour cell proliferation in vitro and cancer progression of tumour xenografts in vivo. Together, our data establish that androgen-dependent kinase signalling leads to the writing of the new chromatin mark H3T6ph, which in consequence prevents removal of active methyl marks from H3K4 during AR-stimulated gene expression.</description><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature08839</identifier><identifier>PMID: 20228790</identifier><language>eng</language><publisher>England</publisher><subject>Androgens - metabolism ; Androgens - pharmacology ; Animals ; Cell Division - drug effects ; Cell Line, Tumor ; Chromatin - metabolism ; Gene Expression Regulation - drug effects ; Gene Knockdown Techniques ; Histone Demethylases - antagonists &amp; inhibitors ; Histone Demethylases - metabolism ; Histones - chemistry ; Histones - metabolism ; Humans ; Lysine - chemistry ; Lysine - metabolism ; Male ; Methylation - drug effects ; Mice ; Mice, Nude ; Mice, SCID ; Phosphorylation - drug effects ; Phosphothreonine - metabolism ; Promoter Regions, Genetic - genetics ; Prostatic Neoplasms - enzymology ; Prostatic Neoplasms - metabolism ; Prostatic Neoplasms - pathology ; Protein Kinase C - antagonists &amp; inhibitors ; Protein Kinase C - deficiency ; Protein Kinase C - genetics ; Protein Kinase C - metabolism ; Protein Kinase C beta ; Signal Transduction - drug effects ; Xenograft Model Antitumor Assays</subject><ispartof>Nature (London), 2010-04, Vol.464 (7289), p.792-796</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20228790$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Metzger, Eric</creatorcontrib><creatorcontrib>Imhof, Axel</creatorcontrib><creatorcontrib>Patel, Dharmeshkumar</creatorcontrib><creatorcontrib>Kahl, Philip</creatorcontrib><creatorcontrib>Hoffmeyer, Katrin</creatorcontrib><creatorcontrib>Friedrichs, Nicolaus</creatorcontrib><creatorcontrib>Müller, Judith M</creatorcontrib><creatorcontrib>Greschik, Holger</creatorcontrib><creatorcontrib>Kirfel, Jutta</creatorcontrib><creatorcontrib>Ji, Sujuan</creatorcontrib><creatorcontrib>Kunowska, Natalia</creatorcontrib><creatorcontrib>Beisenherz-Huss, Christian</creatorcontrib><creatorcontrib>Günther, Thomas</creatorcontrib><creatorcontrib>Buettner, Reinhard</creatorcontrib><creatorcontrib>Schüle, Roland</creatorcontrib><title>Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4</title><title>Nature (London)</title><addtitle>Nature</addtitle><description>Demethylation at distinct lysine residues in histone H3 by lysine-specific demethylase 1 (LSD1) causes either gene repression or activation. As a component of co-repressor complexes, LSD1 contributes to target gene repression by removing mono- and dimethyl marks from lysine 4 of histone H3 (H3K4). In contrast, during androgen receptor (AR)-activated gene expression, LSD1 removes mono- and dimethyl marks from lysine 9 of histone H3 (H3K9). Yet, the mechanisms that control this dual specificity of demethylation are unknown. Here we show that phosphorylation of histone H3 at threonine 6 (H3T6) by protein kinase C beta I (PKCbeta(I), also known as PRKCbeta) is the key event that prevents LSD1 from demethylating H3K4 during AR-dependent gene activation. In vitro, histone H3 peptides methylated at lysine 4 and phosphorylated at threonine 6 are no longer LSD1 substrates. In vivo, PKCbeta(I) co-localizes with AR and LSD1 on target gene promoters and phosphorylates H3T6 after androgen-induced gene expression. RNA interference (RNAi)-mediated knockdown of PKCbeta(I) abrogates H3T6 phosphorylation, enhances demethylation at H3K4, and inhibits AR-dependent transcription. Activation of PKCbeta(I) requires androgen-dependent recruitment of the gatekeeper kinase protein kinase C (PKC)-related kinase 1 (PRK1). Notably, increased levels of PKCbeta(I) and phosphorylated H3T6 (H3T6ph) positively correlate with high Gleason scores of prostate carcinomas, and inhibition of PKCbeta(I) blocks AR-induced tumour cell proliferation in vitro and cancer progression of tumour xenografts in vivo. Together, our data establish that androgen-dependent kinase signalling leads to the writing of the new chromatin mark H3T6ph, which in consequence prevents removal of active methyl marks from H3K4 during AR-stimulated gene expression.</description><subject>Androgens - metabolism</subject><subject>Androgens - pharmacology</subject><subject>Animals</subject><subject>Cell Division - drug effects</subject><subject>Cell Line, Tumor</subject><subject>Chromatin - metabolism</subject><subject>Gene Expression Regulation - drug effects</subject><subject>Gene Knockdown Techniques</subject><subject>Histone Demethylases - antagonists &amp; inhibitors</subject><subject>Histone Demethylases - metabolism</subject><subject>Histones - chemistry</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Lysine - chemistry</subject><subject>Lysine - metabolism</subject><subject>Male</subject><subject>Methylation - drug effects</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Mice, SCID</subject><subject>Phosphorylation - drug effects</subject><subject>Phosphothreonine - metabolism</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Prostatic Neoplasms - enzymology</subject><subject>Prostatic Neoplasms - metabolism</subject><subject>Prostatic Neoplasms - pathology</subject><subject>Protein Kinase C - antagonists &amp; inhibitors</subject><subject>Protein Kinase C - deficiency</subject><subject>Protein Kinase C - genetics</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein Kinase C beta</subject><subject>Signal Transduction - drug effects</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpNkDtPwzAYRS0kREthYkfegCFg-_NzRBXQqpXokD1yElsJSuIQO0P_PUi0EtNdzjnDReiOkmdKQL8MNs2TI1qDuUBLypXMuNRqga5j_CKECKr4FVowwphWhixRfmhCHJswHTub2jDg4HHTxhQGhzeQS1we8WG3Ll2yj9snXIUhTaGLuHa9S81ZsumftOM36NLbLrrb065Q_v6WrzfZ_vNju37dZ6MQJGOSaq6tKrlxQL2poNZGMA6aMOmsrWsjqQXvmZel9xRAiUqUwhjDXcUVrNDDX3acwvfsYir6Nlau6-zgwhwLBSBAMSl_yfsTOZe9q4txans7HYvzD_ADeGNcUw</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Metzger, Eric</creator><creator>Imhof, Axel</creator><creator>Patel, Dharmeshkumar</creator><creator>Kahl, Philip</creator><creator>Hoffmeyer, Katrin</creator><creator>Friedrichs, Nicolaus</creator><creator>Müller, Judith M</creator><creator>Greschik, Holger</creator><creator>Kirfel, Jutta</creator><creator>Ji, Sujuan</creator><creator>Kunowska, Natalia</creator><creator>Beisenherz-Huss, Christian</creator><creator>Günther, Thomas</creator><creator>Buettner, Reinhard</creator><creator>Schüle, Roland</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20100401</creationdate><title>Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4</title><author>Metzger, Eric ; Imhof, Axel ; Patel, Dharmeshkumar ; Kahl, Philip ; Hoffmeyer, Katrin ; Friedrichs, Nicolaus ; Müller, Judith M ; Greschik, Holger ; Kirfel, Jutta ; Ji, Sujuan ; Kunowska, Natalia ; Beisenherz-Huss, Christian ; Günther, Thomas ; Buettner, Reinhard ; Schüle, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p550-261848a7b49e31f9c3d8952438026eaadd961a3ff2f6bff13375c5b59994ec473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Androgens - metabolism</topic><topic>Androgens - pharmacology</topic><topic>Animals</topic><topic>Cell Division - drug effects</topic><topic>Cell Line, Tumor</topic><topic>Chromatin - metabolism</topic><topic>Gene Expression Regulation - drug effects</topic><topic>Gene Knockdown Techniques</topic><topic>Histone Demethylases - antagonists &amp; inhibitors</topic><topic>Histone Demethylases - metabolism</topic><topic>Histones - chemistry</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Lysine - chemistry</topic><topic>Lysine - metabolism</topic><topic>Male</topic><topic>Methylation - drug effects</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Mice, SCID</topic><topic>Phosphorylation - drug effects</topic><topic>Phosphothreonine - metabolism</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Prostatic Neoplasms - enzymology</topic><topic>Prostatic Neoplasms - metabolism</topic><topic>Prostatic Neoplasms - pathology</topic><topic>Protein Kinase C - antagonists &amp; inhibitors</topic><topic>Protein Kinase C - deficiency</topic><topic>Protein Kinase C - genetics</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein Kinase C beta</topic><topic>Signal Transduction - drug effects</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metzger, Eric</creatorcontrib><creatorcontrib>Imhof, Axel</creatorcontrib><creatorcontrib>Patel, Dharmeshkumar</creatorcontrib><creatorcontrib>Kahl, Philip</creatorcontrib><creatorcontrib>Hoffmeyer, Katrin</creatorcontrib><creatorcontrib>Friedrichs, Nicolaus</creatorcontrib><creatorcontrib>Müller, Judith M</creatorcontrib><creatorcontrib>Greschik, Holger</creatorcontrib><creatorcontrib>Kirfel, Jutta</creatorcontrib><creatorcontrib>Ji, Sujuan</creatorcontrib><creatorcontrib>Kunowska, Natalia</creatorcontrib><creatorcontrib>Beisenherz-Huss, Christian</creatorcontrib><creatorcontrib>Günther, Thomas</creatorcontrib><creatorcontrib>Buettner, Reinhard</creatorcontrib><creatorcontrib>Schüle, Roland</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metzger, Eric</au><au>Imhof, Axel</au><au>Patel, Dharmeshkumar</au><au>Kahl, Philip</au><au>Hoffmeyer, Katrin</au><au>Friedrichs, Nicolaus</au><au>Müller, Judith M</au><au>Greschik, Holger</au><au>Kirfel, Jutta</au><au>Ji, Sujuan</au><au>Kunowska, Natalia</au><au>Beisenherz-Huss, Christian</au><au>Günther, Thomas</au><au>Buettner, Reinhard</au><au>Schüle, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4</atitle><jtitle>Nature (London)</jtitle><addtitle>Nature</addtitle><date>2010-04-01</date><risdate>2010</risdate><volume>464</volume><issue>7289</issue><spage>792</spage><epage>796</epage><pages>792-796</pages><eissn>1476-4687</eissn><abstract>Demethylation at distinct lysine residues in histone H3 by lysine-specific demethylase 1 (LSD1) causes either gene repression or activation. As a component of co-repressor complexes, LSD1 contributes to target gene repression by removing mono- and dimethyl marks from lysine 4 of histone H3 (H3K4). In contrast, during androgen receptor (AR)-activated gene expression, LSD1 removes mono- and dimethyl marks from lysine 9 of histone H3 (H3K9). Yet, the mechanisms that control this dual specificity of demethylation are unknown. Here we show that phosphorylation of histone H3 at threonine 6 (H3T6) by protein kinase C beta I (PKCbeta(I), also known as PRKCbeta) is the key event that prevents LSD1 from demethylating H3K4 during AR-dependent gene activation. In vitro, histone H3 peptides methylated at lysine 4 and phosphorylated at threonine 6 are no longer LSD1 substrates. In vivo, PKCbeta(I) co-localizes with AR and LSD1 on target gene promoters and phosphorylates H3T6 after androgen-induced gene expression. RNA interference (RNAi)-mediated knockdown of PKCbeta(I) abrogates H3T6 phosphorylation, enhances demethylation at H3K4, and inhibits AR-dependent transcription. Activation of PKCbeta(I) requires androgen-dependent recruitment of the gatekeeper kinase protein kinase C (PKC)-related kinase 1 (PRK1). Notably, increased levels of PKCbeta(I) and phosphorylated H3T6 (H3T6ph) positively correlate with high Gleason scores of prostate carcinomas, and inhibition of PKCbeta(I) blocks AR-induced tumour cell proliferation in vitro and cancer progression of tumour xenografts in vivo. Together, our data establish that androgen-dependent kinase signalling leads to the writing of the new chromatin mark H3T6ph, which in consequence prevents removal of active methyl marks from H3K4 during AR-stimulated gene expression.</abstract><cop>England</cop><pmid>20228790</pmid><doi>10.1038/nature08839</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1476-4687
ispartof Nature (London), 2010-04, Vol.464 (7289), p.792-796
issn 1476-4687
language eng
recordid cdi_proquest_miscellaneous_733537266
source MEDLINE; Springer Nature - Complete Springer Journals; Nature
subjects Androgens - metabolism
Androgens - pharmacology
Animals
Cell Division - drug effects
Cell Line, Tumor
Chromatin - metabolism
Gene Expression Regulation - drug effects
Gene Knockdown Techniques
Histone Demethylases - antagonists & inhibitors
Histone Demethylases - metabolism
Histones - chemistry
Histones - metabolism
Humans
Lysine - chemistry
Lysine - metabolism
Male
Methylation - drug effects
Mice
Mice, Nude
Mice, SCID
Phosphorylation - drug effects
Phosphothreonine - metabolism
Promoter Regions, Genetic - genetics
Prostatic Neoplasms - enzymology
Prostatic Neoplasms - metabolism
Prostatic Neoplasms - pathology
Protein Kinase C - antagonists & inhibitors
Protein Kinase C - deficiency
Protein Kinase C - genetics
Protein Kinase C - metabolism
Protein Kinase C beta
Signal Transduction - drug effects
Xenograft Model Antitumor Assays
title Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorylation%20of%20histone%20H3T6%20by%20PKCbeta(I)%20controls%20demethylation%20at%20histone%20H3K4&rft.jtitle=Nature%20(London)&rft.au=Metzger,%20Eric&rft.date=2010-04-01&rft.volume=464&rft.issue=7289&rft.spage=792&rft.epage=796&rft.pages=792-796&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature08839&rft_dat=%3Cproquest_pubme%3E733537266%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733537266&rft_id=info:pmid/20228790&rfr_iscdi=true