The influence of reduced hamstring length on patellofemoral joint stress during squatting in healthy male adults
Abstract Increased patellofemoral joint (PFJ) stress has been implicated in the development of PFJ pathologies. Previous studies have identified a relationship between reduced hamstring length and patellofemoral pain syndrome. Hamstring stretching is also recommended in the management thereof. Howev...
Gespeichert in:
Veröffentlicht in: | Gait & posture 2010-01, Vol.31 (1), p.47-51 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 1 |
container_start_page | 47 |
container_title | Gait & posture |
container_volume | 31 |
creator | Whyte, Enda F Moran, Kieran Shortt, Conor P Marshall, Brendan |
description | Abstract Increased patellofemoral joint (PFJ) stress has been implicated in the development of PFJ pathologies. Previous studies have identified a relationship between reduced hamstring length and patellofemoral pain syndrome. Hamstring stretching is also recommended in the management thereof. However, the relationship between reduced hamstring length and PFJ stress has not been explored in vivo during activities that load the PFJ, such as squatting. The objective of this study was to determine if persons with reduced hamstring length demonstrate increased PFJ stress during squatting compared with individuals without reduced hamstring length. Eight participants with, and eight participants without, reduced hamstring length were assessed to determine their PFJ contact area using magnetic resonance imaging, and their PFJ reaction force during squatting using motion analysis. Data collected were entered into a biomechanical model to calculate medial, lateral and total PFJ stress. It was found that participants with reduced hamstring length had significantly greater total (393.39 Pa/kg vs. 213.01 Pa/kg) and lateral (311.23 Pa/kg vs. 142.55 Pa/kg) PFJ stress at 60° knee flexion during squat descent and ascent (427.75 Pa/kg vs. 255.64 Pa/kg and 337.75 Pa/kg vs. 170.63 Pa/kg, respectively). This was due to significantly increased PFJ reaction force at 60° knee flexion during squat descent (12.18 N/kg vs. 7.21 N/kg) and ascent (13.03 N/kg vs. 8.72 N/kg), and lower medial PFJ contact area at 60° knee flexion (88 mm2 vs. 160 mm2 ). The results of this study demonstrate a relationship between reduced hamstring length and increased PFJ stress during squatting due to increased PFJ reaction force and reduced medial PFJ contact area. |
doi_str_mv | 10.1016/j.gaitpost.2009.08.243 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733531185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0966636209005943</els_id><sourcerecordid>21234919</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-f62f62ae32c05221546c452ffe6b5a22c22641f58841198faaedb6566fac3e053</originalsourceid><addsrcrecordid>eNqFks-P1CAUgInRuOPqv7DhpKdWoC1TLkaz8VeyiQfXM2HoY0ql0AVqMv-91Blj4kETEjh87z3e-x5CN5TUlFD-eqqPyuYlpFwzQkRN-pq1zSO0o_1eVIxR8RjtiOC84g1nV-hZShMhpG169hRdUdHTnrP9Di33I2DrjVvBa8DB4AjDqmHAo5pTjtYfsQN_zCMOHi8qg3PBwByicngK1mdcKEgJD-svOD2sKuftZT0eQbk8nvCsHGA1rC6n5-iJUS7Bi8t9jb59eH9_-6m6-_Lx8-27u0p3VOTKcFaOgoZp0pV2upbrtmPGAD90ijHNGG-p6fq-paUboxQMB95xbpRugHTNNXp1zrvE8LBCynK2SZffKw9hTXLfNF1Dab-RL_9JMsqaVlBRQH4GdQwpRTByiXZW8SQpkZsVOcnfVuRmRZJeFisl8OZSYT3MMPwJu2gowNszAGUiPyxEmbTdhAw2gs5yCPb_Nd78lUI7661W7jucIE1hjb7MW1KZmCTy67Yb22oQQUgnSoKfMdm4gA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21234919</pqid></control><display><type>article</type><title>The influence of reduced hamstring length on patellofemoral joint stress during squatting in healthy male adults</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Whyte, Enda F ; Moran, Kieran ; Shortt, Conor P ; Marshall, Brendan</creator><creatorcontrib>Whyte, Enda F ; Moran, Kieran ; Shortt, Conor P ; Marshall, Brendan</creatorcontrib><description>Abstract Increased patellofemoral joint (PFJ) stress has been implicated in the development of PFJ pathologies. Previous studies have identified a relationship between reduced hamstring length and patellofemoral pain syndrome. Hamstring stretching is also recommended in the management thereof. However, the relationship between reduced hamstring length and PFJ stress has not been explored in vivo during activities that load the PFJ, such as squatting. The objective of this study was to determine if persons with reduced hamstring length demonstrate increased PFJ stress during squatting compared with individuals without reduced hamstring length. Eight participants with, and eight participants without, reduced hamstring length were assessed to determine their PFJ contact area using magnetic resonance imaging, and their PFJ reaction force during squatting using motion analysis. Data collected were entered into a biomechanical model to calculate medial, lateral and total PFJ stress. It was found that participants with reduced hamstring length had significantly greater total (393.39 Pa/kg vs. 213.01 Pa/kg) and lateral (311.23 Pa/kg vs. 142.55 Pa/kg) PFJ stress at 60° knee flexion during squat descent and ascent (427.75 Pa/kg vs. 255.64 Pa/kg and 337.75 Pa/kg vs. 170.63 Pa/kg, respectively). This was due to significantly increased PFJ reaction force at 60° knee flexion during squat descent (12.18 N/kg vs. 7.21 N/kg) and ascent (13.03 N/kg vs. 8.72 N/kg), and lower medial PFJ contact area at 60° knee flexion (88 mm2 vs. 160 mm2 ). The results of this study demonstrate a relationship between reduced hamstring length and increased PFJ stress during squatting due to increased PFJ reaction force and reduced medial PFJ contact area.</description><identifier>ISSN: 0966-6362</identifier><identifier>EISSN: 1879-2219</identifier><identifier>DOI: 10.1016/j.gaitpost.2009.08.243</identifier><identifier>PMID: 19818627</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Adult ; Analysis of Variance ; Biomechanical Phenomena ; Biomechanics ; Femur - physiology ; Hamstring ; Humans ; Imaging, Three-Dimensional - instrumentation ; Knee Joint - physiology ; Magnetic Resonance Imaging ; Male ; Movement - physiology ; Muscle, Skeletal - physiology ; Orthopedics ; Patella - physiology ; Patellofemoral ; Range of Motion, Articular - physiology ; Squatting ; Stress ; Stress, Mechanical</subject><ispartof>Gait & posture, 2010-01, Vol.31 (1), p.47-51</ispartof><rights>Elsevier B.V.</rights><rights>2009 Elsevier B.V.</rights><rights>Copyright 2009 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-f62f62ae32c05221546c452ffe6b5a22c22641f58841198faaedb6566fac3e053</citedby><cites>FETCH-LOGICAL-c519t-f62f62ae32c05221546c452ffe6b5a22c22641f58841198faaedb6566fac3e053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.gaitpost.2009.08.243$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19818627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Whyte, Enda F</creatorcontrib><creatorcontrib>Moran, Kieran</creatorcontrib><creatorcontrib>Shortt, Conor P</creatorcontrib><creatorcontrib>Marshall, Brendan</creatorcontrib><title>The influence of reduced hamstring length on patellofemoral joint stress during squatting in healthy male adults</title><title>Gait & posture</title><addtitle>Gait Posture</addtitle><description>Abstract Increased patellofemoral joint (PFJ) stress has been implicated in the development of PFJ pathologies. Previous studies have identified a relationship between reduced hamstring length and patellofemoral pain syndrome. Hamstring stretching is also recommended in the management thereof. However, the relationship between reduced hamstring length and PFJ stress has not been explored in vivo during activities that load the PFJ, such as squatting. The objective of this study was to determine if persons with reduced hamstring length demonstrate increased PFJ stress during squatting compared with individuals without reduced hamstring length. Eight participants with, and eight participants without, reduced hamstring length were assessed to determine their PFJ contact area using magnetic resonance imaging, and their PFJ reaction force during squatting using motion analysis. Data collected were entered into a biomechanical model to calculate medial, lateral and total PFJ stress. It was found that participants with reduced hamstring length had significantly greater total (393.39 Pa/kg vs. 213.01 Pa/kg) and lateral (311.23 Pa/kg vs. 142.55 Pa/kg) PFJ stress at 60° knee flexion during squat descent and ascent (427.75 Pa/kg vs. 255.64 Pa/kg and 337.75 Pa/kg vs. 170.63 Pa/kg, respectively). This was due to significantly increased PFJ reaction force at 60° knee flexion during squat descent (12.18 N/kg vs. 7.21 N/kg) and ascent (13.03 N/kg vs. 8.72 N/kg), and lower medial PFJ contact area at 60° knee flexion (88 mm2 vs. 160 mm2 ). The results of this study demonstrate a relationship between reduced hamstring length and increased PFJ stress during squatting due to increased PFJ reaction force and reduced medial PFJ contact area.</description><subject>Adult</subject><subject>Analysis of Variance</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Femur - physiology</subject><subject>Hamstring</subject><subject>Humans</subject><subject>Imaging, Three-Dimensional - instrumentation</subject><subject>Knee Joint - physiology</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Movement - physiology</subject><subject>Muscle, Skeletal - physiology</subject><subject>Orthopedics</subject><subject>Patella - physiology</subject><subject>Patellofemoral</subject><subject>Range of Motion, Articular - physiology</subject><subject>Squatting</subject><subject>Stress</subject><subject>Stress, Mechanical</subject><issn>0966-6362</issn><issn>1879-2219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks-P1CAUgInRuOPqv7DhpKdWoC1TLkaz8VeyiQfXM2HoY0ql0AVqMv-91Blj4kETEjh87z3e-x5CN5TUlFD-eqqPyuYlpFwzQkRN-pq1zSO0o_1eVIxR8RjtiOC84g1nV-hZShMhpG169hRdUdHTnrP9Di33I2DrjVvBa8DB4AjDqmHAo5pTjtYfsQN_zCMOHi8qg3PBwByicngK1mdcKEgJD-svOD2sKuftZT0eQbk8nvCsHGA1rC6n5-iJUS7Bi8t9jb59eH9_-6m6-_Lx8-27u0p3VOTKcFaOgoZp0pV2upbrtmPGAD90ijHNGG-p6fq-paUboxQMB95xbpRugHTNNXp1zrvE8LBCynK2SZffKw9hTXLfNF1Dab-RL_9JMsqaVlBRQH4GdQwpRTByiXZW8SQpkZsVOcnfVuRmRZJeFisl8OZSYT3MMPwJu2gowNszAGUiPyxEmbTdhAw2gs5yCPb_Nd78lUI7661W7jucIE1hjb7MW1KZmCTy67Yb22oQQUgnSoKfMdm4gA</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Whyte, Enda F</creator><creator>Moran, Kieran</creator><creator>Shortt, Conor P</creator><creator>Marshall, Brendan</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TS</scope><scope>7X8</scope></search><sort><creationdate>20100101</creationdate><title>The influence of reduced hamstring length on patellofemoral joint stress during squatting in healthy male adults</title><author>Whyte, Enda F ; Moran, Kieran ; Shortt, Conor P ; Marshall, Brendan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-f62f62ae32c05221546c452ffe6b5a22c22641f58841198faaedb6566fac3e053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adult</topic><topic>Analysis of Variance</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Femur - physiology</topic><topic>Hamstring</topic><topic>Humans</topic><topic>Imaging, Three-Dimensional - instrumentation</topic><topic>Knee Joint - physiology</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Movement - physiology</topic><topic>Muscle, Skeletal - physiology</topic><topic>Orthopedics</topic><topic>Patella - physiology</topic><topic>Patellofemoral</topic><topic>Range of Motion, Articular - physiology</topic><topic>Squatting</topic><topic>Stress</topic><topic>Stress, Mechanical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whyte, Enda F</creatorcontrib><creatorcontrib>Moran, Kieran</creatorcontrib><creatorcontrib>Shortt, Conor P</creatorcontrib><creatorcontrib>Marshall, Brendan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><jtitle>Gait & posture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whyte, Enda F</au><au>Moran, Kieran</au><au>Shortt, Conor P</au><au>Marshall, Brendan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of reduced hamstring length on patellofemoral joint stress during squatting in healthy male adults</atitle><jtitle>Gait & posture</jtitle><addtitle>Gait Posture</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>31</volume><issue>1</issue><spage>47</spage><epage>51</epage><pages>47-51</pages><issn>0966-6362</issn><eissn>1879-2219</eissn><abstract>Abstract Increased patellofemoral joint (PFJ) stress has been implicated in the development of PFJ pathologies. Previous studies have identified a relationship between reduced hamstring length and patellofemoral pain syndrome. Hamstring stretching is also recommended in the management thereof. However, the relationship between reduced hamstring length and PFJ stress has not been explored in vivo during activities that load the PFJ, such as squatting. The objective of this study was to determine if persons with reduced hamstring length demonstrate increased PFJ stress during squatting compared with individuals without reduced hamstring length. Eight participants with, and eight participants without, reduced hamstring length were assessed to determine their PFJ contact area using magnetic resonance imaging, and their PFJ reaction force during squatting using motion analysis. Data collected were entered into a biomechanical model to calculate medial, lateral and total PFJ stress. It was found that participants with reduced hamstring length had significantly greater total (393.39 Pa/kg vs. 213.01 Pa/kg) and lateral (311.23 Pa/kg vs. 142.55 Pa/kg) PFJ stress at 60° knee flexion during squat descent and ascent (427.75 Pa/kg vs. 255.64 Pa/kg and 337.75 Pa/kg vs. 170.63 Pa/kg, respectively). This was due to significantly increased PFJ reaction force at 60° knee flexion during squat descent (12.18 N/kg vs. 7.21 N/kg) and ascent (13.03 N/kg vs. 8.72 N/kg), and lower medial PFJ contact area at 60° knee flexion (88 mm2 vs. 160 mm2 ). The results of this study demonstrate a relationship between reduced hamstring length and increased PFJ stress during squatting due to increased PFJ reaction force and reduced medial PFJ contact area.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>19818627</pmid><doi>10.1016/j.gaitpost.2009.08.243</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0966-6362 |
ispartof | Gait & posture, 2010-01, Vol.31 (1), p.47-51 |
issn | 0966-6362 1879-2219 |
language | eng |
recordid | cdi_proquest_miscellaneous_733531185 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Adult Analysis of Variance Biomechanical Phenomena Biomechanics Femur - physiology Hamstring Humans Imaging, Three-Dimensional - instrumentation Knee Joint - physiology Magnetic Resonance Imaging Male Movement - physiology Muscle, Skeletal - physiology Orthopedics Patella - physiology Patellofemoral Range of Motion, Articular - physiology Squatting Stress Stress, Mechanical |
title | The influence of reduced hamstring length on patellofemoral joint stress during squatting in healthy male adults |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20reduced%20hamstring%20length%20on%20patellofemoral%20joint%20stress%20during%20squatting%20in%20healthy%20male%20adults&rft.jtitle=Gait%20&%20posture&rft.au=Whyte,%20Enda%20F&rft.date=2010-01-01&rft.volume=31&rft.issue=1&rft.spage=47&rft.epage=51&rft.pages=47-51&rft.issn=0966-6362&rft.eissn=1879-2219&rft_id=info:doi/10.1016/j.gaitpost.2009.08.243&rft_dat=%3Cproquest_cross%3E21234919%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21234919&rft_id=info:pmid/19818627&rft_els_id=1_s2_0_S0966636209005943&rfr_iscdi=true |