Modification of Porous Protein Crystals in Development of Biohybrid Materials
Protein assemblies have attracted increasing attention for construction of biohybrid materials. Protein crystals can also be regarded as solid protein assemblies. The present work demonstrates that protein crystals can be employed as porous biomaterials by site-specific modifications of the crystals...
Gespeichert in:
Veröffentlicht in: | Bioconjugate chemistry 2010-02, Vol.21 (2), p.264-269 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 269 |
---|---|
container_issue | 2 |
container_start_page | 264 |
container_title | Bioconjugate chemistry |
container_volume | 21 |
creator | Koshiyama, Tomomi Kawaba, Naomi Hikage, Tatsuo Shirai, Masanobu Miura, Yuki Huang, Cheng-Yuan Tanaka, Koichiro Watanabe, Yoshihito Ueno, Takafumi |
description | Protein assemblies have attracted increasing attention for construction of biohybrid materials. Protein crystals can also be regarded as solid protein assemblies. The present work demonstrates that protein crystals can be employed as porous biomaterials by site-specific modifications of the crystals of recombinant sperm whale myoglobin mutants. The myoglobin crystals of space group P6 provide hexagonal pores consisting of the building blocks of six Mb molecules, which form a pore with a diameter of 40 Å. On the basis of the lattice structure of the Mb crystals, we have selected appropriate residues located on the surface of the pores for replacement with cysteine. This enables modification of the pore surface via coupling with maleimide derivatives. We have succeeded in crystallizing the modified Mb mutants, retaining the P6 lattice, and consistently aligning nanosized functional molecules such as fluorescein, eosin, and Ru(bpy)3 into the hexagonal pores of the Mb crystals. Our strategy for site-specific modification of protein crystal pores is applicable to various protein crystals with porous structures. We believe that modified porous protein crystals will provide attractive candidates for novel solid materials in nanotechnology applications. |
doi_str_mv | 10.1021/bc9003052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733529442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733529442</sourcerecordid><originalsourceid>FETCH-LOGICAL-a451t-8b59036c82517f9033210d9146d7bec31f503234bf3bb87585cf22fd556320d13</originalsourceid><addsrcrecordid>eNplkF1LwzAUhoMobk4v_ANSBBEvqicnTZde6vyEDXeh16VNE8xom5m0wv69GZsT9Op9Lx7ec3gIOaVwTQHpTSkzAAYc98iQcoQ4ERT3Q4eExVQADsiR9wsAyKjAQzLA0DLBsiGZzWxltJFFZ2wbWR3NrbO9j-bOdsq00cStfFfUPgr9Xn2p2i4b1XZr8s7Yj1XpTBXNik45E6hjcqBDqJNtjsj748Pb5Dmevj69TG6ncZFw2sWi5BmwVArkdKxDZUihymiSVuNSSUY1B4YsKTUrSzHmgkuNqCvOU4ZQUTYil5vdpbOfvfJd3hgvVV0XrQrf52PGOGZJgoE8_0MubO_a8FyONA0egqIAXW0g6az3Tul86UxTuFVOIV8bzneGA3u2HezLRlU78kdpAC42QCH977H_Q98QMn8I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216200043</pqid></control><display><type>article</type><title>Modification of Porous Protein Crystals in Development of Biohybrid Materials</title><source>ACS Publications</source><source>MEDLINE</source><creator>Koshiyama, Tomomi ; Kawaba, Naomi ; Hikage, Tatsuo ; Shirai, Masanobu ; Miura, Yuki ; Huang, Cheng-Yuan ; Tanaka, Koichiro ; Watanabe, Yoshihito ; Ueno, Takafumi</creator><creatorcontrib>Koshiyama, Tomomi ; Kawaba, Naomi ; Hikage, Tatsuo ; Shirai, Masanobu ; Miura, Yuki ; Huang, Cheng-Yuan ; Tanaka, Koichiro ; Watanabe, Yoshihito ; Ueno, Takafumi</creatorcontrib><description>Protein assemblies have attracted increasing attention for construction of biohybrid materials. Protein crystals can also be regarded as solid protein assemblies. The present work demonstrates that protein crystals can be employed as porous biomaterials by site-specific modifications of the crystals of recombinant sperm whale myoglobin mutants. The myoglobin crystals of space group P6 provide hexagonal pores consisting of the building blocks of six Mb molecules, which form a pore with a diameter of 40 Å. On the basis of the lattice structure of the Mb crystals, we have selected appropriate residues located on the surface of the pores for replacement with cysteine. This enables modification of the pore surface via coupling with maleimide derivatives. We have succeeded in crystallizing the modified Mb mutants, retaining the P6 lattice, and consistently aligning nanosized functional molecules such as fluorescein, eosin, and Ru(bpy)3 into the hexagonal pores of the Mb crystals. Our strategy for site-specific modification of protein crystal pores is applicable to various protein crystals with porous structures. We believe that modified porous protein crystals will provide attractive candidates for novel solid materials in nanotechnology applications.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/bc9003052</identifier><identifier>PMID: 20099839</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Biomedical materials ; Crystallography, X-Ray ; Crystals ; Microscopy ; Models, Molecular ; Molecules ; Mutation ; Myoglobin - chemistry ; Myoglobin - genetics ; Myoglobin - metabolism ; Nanotechnology ; Porosity ; Protein Conformation ; Proteins ; Solids ; Spectrophotometry, Ultraviolet</subject><ispartof>Bioconjugate chemistry, 2010-02, Vol.21 (2), p.264-269</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 17, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a451t-8b59036c82517f9033210d9146d7bec31f503234bf3bb87585cf22fd556320d13</citedby><cites>FETCH-LOGICAL-a451t-8b59036c82517f9033210d9146d7bec31f503234bf3bb87585cf22fd556320d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bc9003052$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bc9003052$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20099839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koshiyama, Tomomi</creatorcontrib><creatorcontrib>Kawaba, Naomi</creatorcontrib><creatorcontrib>Hikage, Tatsuo</creatorcontrib><creatorcontrib>Shirai, Masanobu</creatorcontrib><creatorcontrib>Miura, Yuki</creatorcontrib><creatorcontrib>Huang, Cheng-Yuan</creatorcontrib><creatorcontrib>Tanaka, Koichiro</creatorcontrib><creatorcontrib>Watanabe, Yoshihito</creatorcontrib><creatorcontrib>Ueno, Takafumi</creatorcontrib><title>Modification of Porous Protein Crystals in Development of Biohybrid Materials</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>Protein assemblies have attracted increasing attention for construction of biohybrid materials. Protein crystals can also be regarded as solid protein assemblies. The present work demonstrates that protein crystals can be employed as porous biomaterials by site-specific modifications of the crystals of recombinant sperm whale myoglobin mutants. The myoglobin crystals of space group P6 provide hexagonal pores consisting of the building blocks of six Mb molecules, which form a pore with a diameter of 40 Å. On the basis of the lattice structure of the Mb crystals, we have selected appropriate residues located on the surface of the pores for replacement with cysteine. This enables modification of the pore surface via coupling with maleimide derivatives. We have succeeded in crystallizing the modified Mb mutants, retaining the P6 lattice, and consistently aligning nanosized functional molecules such as fluorescein, eosin, and Ru(bpy)3 into the hexagonal pores of the Mb crystals. Our strategy for site-specific modification of protein crystal pores is applicable to various protein crystals with porous structures. We believe that modified porous protein crystals will provide attractive candidates for novel solid materials in nanotechnology applications.</description><subject>Animals</subject><subject>Biomedical materials</subject><subject>Crystallography, X-Ray</subject><subject>Crystals</subject><subject>Microscopy</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>Mutation</subject><subject>Myoglobin - chemistry</subject><subject>Myoglobin - genetics</subject><subject>Myoglobin - metabolism</subject><subject>Nanotechnology</subject><subject>Porosity</subject><subject>Protein Conformation</subject><subject>Proteins</subject><subject>Solids</subject><subject>Spectrophotometry, Ultraviolet</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNplkF1LwzAUhoMobk4v_ANSBBEvqicnTZde6vyEDXeh16VNE8xom5m0wv69GZsT9Op9Lx7ec3gIOaVwTQHpTSkzAAYc98iQcoQ4ERT3Q4eExVQADsiR9wsAyKjAQzLA0DLBsiGZzWxltJFFZ2wbWR3NrbO9j-bOdsq00cStfFfUPgr9Xn2p2i4b1XZr8s7Yj1XpTBXNik45E6hjcqBDqJNtjsj748Pb5Dmevj69TG6ncZFw2sWi5BmwVArkdKxDZUihymiSVuNSSUY1B4YsKTUrSzHmgkuNqCvOU4ZQUTYil5vdpbOfvfJd3hgvVV0XrQrf52PGOGZJgoE8_0MubO_a8FyONA0egqIAXW0g6az3Tul86UxTuFVOIV8bzneGA3u2HezLRlU78kdpAC42QCH977H_Q98QMn8I</recordid><startdate>20100217</startdate><enddate>20100217</enddate><creator>Koshiyama, Tomomi</creator><creator>Kawaba, Naomi</creator><creator>Hikage, Tatsuo</creator><creator>Shirai, Masanobu</creator><creator>Miura, Yuki</creator><creator>Huang, Cheng-Yuan</creator><creator>Tanaka, Koichiro</creator><creator>Watanabe, Yoshihito</creator><creator>Ueno, Takafumi</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20100217</creationdate><title>Modification of Porous Protein Crystals in Development of Biohybrid Materials</title><author>Koshiyama, Tomomi ; Kawaba, Naomi ; Hikage, Tatsuo ; Shirai, Masanobu ; Miura, Yuki ; Huang, Cheng-Yuan ; Tanaka, Koichiro ; Watanabe, Yoshihito ; Ueno, Takafumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a451t-8b59036c82517f9033210d9146d7bec31f503234bf3bb87585cf22fd556320d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biomedical materials</topic><topic>Crystallography, X-Ray</topic><topic>Crystals</topic><topic>Microscopy</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>Mutation</topic><topic>Myoglobin - chemistry</topic><topic>Myoglobin - genetics</topic><topic>Myoglobin - metabolism</topic><topic>Nanotechnology</topic><topic>Porosity</topic><topic>Protein Conformation</topic><topic>Proteins</topic><topic>Solids</topic><topic>Spectrophotometry, Ultraviolet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koshiyama, Tomomi</creatorcontrib><creatorcontrib>Kawaba, Naomi</creatorcontrib><creatorcontrib>Hikage, Tatsuo</creatorcontrib><creatorcontrib>Shirai, Masanobu</creatorcontrib><creatorcontrib>Miura, Yuki</creatorcontrib><creatorcontrib>Huang, Cheng-Yuan</creatorcontrib><creatorcontrib>Tanaka, Koichiro</creatorcontrib><creatorcontrib>Watanabe, Yoshihito</creatorcontrib><creatorcontrib>Ueno, Takafumi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koshiyama, Tomomi</au><au>Kawaba, Naomi</au><au>Hikage, Tatsuo</au><au>Shirai, Masanobu</au><au>Miura, Yuki</au><au>Huang, Cheng-Yuan</au><au>Tanaka, Koichiro</au><au>Watanabe, Yoshihito</au><au>Ueno, Takafumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of Porous Protein Crystals in Development of Biohybrid Materials</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2010-02-17</date><risdate>2010</risdate><volume>21</volume><issue>2</issue><spage>264</spage><epage>269</epage><pages>264-269</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>Protein assemblies have attracted increasing attention for construction of biohybrid materials. Protein crystals can also be regarded as solid protein assemblies. The present work demonstrates that protein crystals can be employed as porous biomaterials by site-specific modifications of the crystals of recombinant sperm whale myoglobin mutants. The myoglobin crystals of space group P6 provide hexagonal pores consisting of the building blocks of six Mb molecules, which form a pore with a diameter of 40 Å. On the basis of the lattice structure of the Mb crystals, we have selected appropriate residues located on the surface of the pores for replacement with cysteine. This enables modification of the pore surface via coupling with maleimide derivatives. We have succeeded in crystallizing the modified Mb mutants, retaining the P6 lattice, and consistently aligning nanosized functional molecules such as fluorescein, eosin, and Ru(bpy)3 into the hexagonal pores of the Mb crystals. Our strategy for site-specific modification of protein crystal pores is applicable to various protein crystals with porous structures. We believe that modified porous protein crystals will provide attractive candidates for novel solid materials in nanotechnology applications.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20099839</pmid><doi>10.1021/bc9003052</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1043-1802 |
ispartof | Bioconjugate chemistry, 2010-02, Vol.21 (2), p.264-269 |
issn | 1043-1802 1520-4812 |
language | eng |
recordid | cdi_proquest_miscellaneous_733529442 |
source | ACS Publications; MEDLINE |
subjects | Animals Biomedical materials Crystallography, X-Ray Crystals Microscopy Models, Molecular Molecules Mutation Myoglobin - chemistry Myoglobin - genetics Myoglobin - metabolism Nanotechnology Porosity Protein Conformation Proteins Solids Spectrophotometry, Ultraviolet |
title | Modification of Porous Protein Crystals in Development of Biohybrid Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T07%3A00%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20Porous%20Protein%20Crystals%20in%20Development%20of%20Biohybrid%20Materials&rft.jtitle=Bioconjugate%20chemistry&rft.au=Koshiyama,%20Tomomi&rft.date=2010-02-17&rft.volume=21&rft.issue=2&rft.spage=264&rft.epage=269&rft.pages=264-269&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/bc9003052&rft_dat=%3Cproquest_cross%3E733529442%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216200043&rft_id=info:pmid/20099839&rfr_iscdi=true |