Na⁺,K⁺-ATPase Na⁺ Affinity in Rat Skeletal Muscle Fiber Types
Previous studies in expression systems have found different ion activation of the Na⁺/K⁺-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na⁺,K⁺-ATPase activity, and the Na⁺ affinity of Na⁺,K⁺-ATPase was studied in t...
Gespeichert in:
Veröffentlicht in: | The Journal of membrane biology 2010-03, Vol.234 (1), p.35-45 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | 1 |
container_start_page | 35 |
container_title | The Journal of membrane biology |
container_volume | 234 |
creator | Kristensen, Michael Juel, Carsten |
description | Previous studies in expression systems have found different ion activation of the Na⁺/K⁺-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na⁺,K⁺-ATPase activity, and the Na⁺ affinity of Na⁺,K⁺-ATPase was studied in total membranes from rat muscle and purified membranes from muscle with different fiber types. The Na⁺ affinity was higher (K m lower) in oxidative muscle compared with glycolytic muscle and in purified membranes from oxidative muscle compared with glycolytic muscle. Na⁺,K⁺-ATPase isoform analysis implied that heterodimers containing the β₁ isoform have a higher Na⁺ affinity than heterodimers containing the β₂ isoform. Immunoprecipitation experiments demonstrated that dimers with α₁ are responsible for approximately 36% of the total Na,K-ATPase activity. Selective inhibition of the α₂ isoform with ouabain suggested that heterodimers containing the α₁ isoform have a higher Na⁺ affinity than heterodimers containing the α₂ isoform. The estimated K m values for Na⁺ are 4.0, 5.5, 7.5 and 13 mM for α₁β₁, α₂β₁, α₁β₂ and α₂β₂, respectively. The affinity differences and isoform distributions imply that the degree of activation of Na⁺,K⁺-ATPase at physiological Na⁺ concentrations differs between muscles (oxidative and glycolytic) and between subcellular membrane domains with different isoform compositions. These differences may have consequences for ion balance across the muscle membrane. |
doi_str_mv | 10.1007/s00232-010-9237-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733513709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733513709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-68fd1e9de4abc67d44379019f275a45f0bacdbe5921c4b019e793f8006abb23</originalsourceid><addsrcrecordid>eNp9kM1O3DAUhS3UCqbQB-imRN1008C9tmMny9GotFX5U2dYW05yjQKZZLCTxSz7Wn2cPgmGQJFYdGNb93znXOsw9gHhCAH0cQDggqeAkBZc6FTtsBnKOEHJ5Rs2izJPuRK4x96FcAOAWiu5y_b440vlM7Y4t39___nyMx7pfHVpAyWPk2TuXNM1wzZpuuSXHZLlLbU02DY5G0PVUnLSlOST1XZD4YC9dbYN9P7p3mfLk6-rxff09OLbj8X8NK1EIYdU5a5GKmqStqyUrqUUugAsHNeZlZmD0lZ1SVnBsZJlFEgXwuUAypYlF_vs85S68f3dSGEw6yZU1La2o34MRguRodBQRPLTK_KmH30Xv2Y4apkpnusI4QRVvg_BkzMb36yt3xoE89Cumdo1sV3z0K5R0fPxKXgs11T_czzXGQE-ASFK3TX5l83_Sz2cTM72xl77JpirZYwUgDkichD3o9iOCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217456287</pqid></control><display><type>article</type><title>Na⁺,K⁺-ATPase Na⁺ Affinity in Rat Skeletal Muscle Fiber Types</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Kristensen, Michael ; Juel, Carsten</creator><creatorcontrib>Kristensen, Michael ; Juel, Carsten</creatorcontrib><description>Previous studies in expression systems have found different ion activation of the Na⁺/K⁺-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na⁺,K⁺-ATPase activity, and the Na⁺ affinity of Na⁺,K⁺-ATPase was studied in total membranes from rat muscle and purified membranes from muscle with different fiber types. The Na⁺ affinity was higher (K m lower) in oxidative muscle compared with glycolytic muscle and in purified membranes from oxidative muscle compared with glycolytic muscle. Na⁺,K⁺-ATPase isoform analysis implied that heterodimers containing the β₁ isoform have a higher Na⁺ affinity than heterodimers containing the β₂ isoform. Immunoprecipitation experiments demonstrated that dimers with α₁ are responsible for approximately 36% of the total Na,K-ATPase activity. Selective inhibition of the α₂ isoform with ouabain suggested that heterodimers containing the α₁ isoform have a higher Na⁺ affinity than heterodimers containing the α₂ isoform. The estimated K m values for Na⁺ are 4.0, 5.5, 7.5 and 13 mM for α₁β₁, α₂β₁, α₁β₂ and α₂β₂, respectively. The affinity differences and isoform distributions imply that the degree of activation of Na⁺,K⁺-ATPase at physiological Na⁺ concentrations differs between muscles (oxidative and glycolytic) and between subcellular membrane domains with different isoform compositions. These differences may have consequences for ion balance across the muscle membrane.</description><identifier>ISSN: 0022-2631</identifier><identifier>EISSN: 1432-1424</identifier><identifier>DOI: 10.1007/s00232-010-9237-6</identifier><identifier>PMID: 20177668</identifier><language>eng</language><publisher>New York: New York : Springer-Verlag</publisher><subject>Animals ; Biochemistry ; Biomedical and Life Sciences ; Cell Membrane - enzymology ; Cellular biology ; Enzymes ; Glycolysis ; Human Physiology ; Ions ; Isoenzymes - metabolism ; Life Sciences ; Male ; Membranes ; Muscle Fibers, Skeletal - enzymology ; Muscular system ; Ouabain - pharmacology ; Oxidation-Reduction ; Protein Subunits - metabolism ; Rats ; Rodents ; Sodium - metabolism ; Sodium-Potassium-Exchanging ATPase - antagonists & inhibitors ; Sodium-Potassium-Exchanging ATPase - metabolism</subject><ispartof>The Journal of membrane biology, 2010-03, Vol.234 (1), p.35-45</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-68fd1e9de4abc67d44379019f275a45f0bacdbe5921c4b019e793f8006abb23</citedby><cites>FETCH-LOGICAL-c394t-68fd1e9de4abc67d44379019f275a45f0bacdbe5921c4b019e793f8006abb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00232-010-9237-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00232-010-9237-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20177668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kristensen, Michael</creatorcontrib><creatorcontrib>Juel, Carsten</creatorcontrib><title>Na⁺,K⁺-ATPase Na⁺ Affinity in Rat Skeletal Muscle Fiber Types</title><title>The Journal of membrane biology</title><addtitle>J Membrane Biol</addtitle><addtitle>J Membr Biol</addtitle><description>Previous studies in expression systems have found different ion activation of the Na⁺/K⁺-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na⁺,K⁺-ATPase activity, and the Na⁺ affinity of Na⁺,K⁺-ATPase was studied in total membranes from rat muscle and purified membranes from muscle with different fiber types. The Na⁺ affinity was higher (K m lower) in oxidative muscle compared with glycolytic muscle and in purified membranes from oxidative muscle compared with glycolytic muscle. Na⁺,K⁺-ATPase isoform analysis implied that heterodimers containing the β₁ isoform have a higher Na⁺ affinity than heterodimers containing the β₂ isoform. Immunoprecipitation experiments demonstrated that dimers with α₁ are responsible for approximately 36% of the total Na,K-ATPase activity. Selective inhibition of the α₂ isoform with ouabain suggested that heterodimers containing the α₁ isoform have a higher Na⁺ affinity than heterodimers containing the α₂ isoform. The estimated K m values for Na⁺ are 4.0, 5.5, 7.5 and 13 mM for α₁β₁, α₂β₁, α₁β₂ and α₂β₂, respectively. The affinity differences and isoform distributions imply that the degree of activation of Na⁺,K⁺-ATPase at physiological Na⁺ concentrations differs between muscles (oxidative and glycolytic) and between subcellular membrane domains with different isoform compositions. These differences may have consequences for ion balance across the muscle membrane.</description><subject>Animals</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Cell Membrane - enzymology</subject><subject>Cellular biology</subject><subject>Enzymes</subject><subject>Glycolysis</subject><subject>Human Physiology</subject><subject>Ions</subject><subject>Isoenzymes - metabolism</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Membranes</subject><subject>Muscle Fibers, Skeletal - enzymology</subject><subject>Muscular system</subject><subject>Ouabain - pharmacology</subject><subject>Oxidation-Reduction</subject><subject>Protein Subunits - metabolism</subject><subject>Rats</subject><subject>Rodents</subject><subject>Sodium - metabolism</subject><subject>Sodium-Potassium-Exchanging ATPase - antagonists & inhibitors</subject><subject>Sodium-Potassium-Exchanging ATPase - metabolism</subject><issn>0022-2631</issn><issn>1432-1424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kM1O3DAUhS3UCqbQB-imRN1008C9tmMny9GotFX5U2dYW05yjQKZZLCTxSz7Wn2cPgmGQJFYdGNb93znXOsw9gHhCAH0cQDggqeAkBZc6FTtsBnKOEHJ5Rs2izJPuRK4x96FcAOAWiu5y_b440vlM7Y4t39___nyMx7pfHVpAyWPk2TuXNM1wzZpuuSXHZLlLbU02DY5G0PVUnLSlOST1XZD4YC9dbYN9P7p3mfLk6-rxff09OLbj8X8NK1EIYdU5a5GKmqStqyUrqUUugAsHNeZlZmD0lZ1SVnBsZJlFEgXwuUAypYlF_vs85S68f3dSGEw6yZU1La2o34MRguRodBQRPLTK_KmH30Xv2Y4apkpnusI4QRVvg_BkzMb36yt3xoE89Cumdo1sV3z0K5R0fPxKXgs11T_czzXGQE-ASFK3TX5l83_Sz2cTM72xl77JpirZYwUgDkichD3o9iOCg</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Kristensen, Michael</creator><creator>Juel, Carsten</creator><general>New York : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20100301</creationdate><title>Na⁺,K⁺-ATPase Na⁺ Affinity in Rat Skeletal Muscle Fiber Types</title><author>Kristensen, Michael ; Juel, Carsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-68fd1e9de4abc67d44379019f275a45f0bacdbe5921c4b019e793f8006abb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Cell Membrane - enzymology</topic><topic>Cellular biology</topic><topic>Enzymes</topic><topic>Glycolysis</topic><topic>Human Physiology</topic><topic>Ions</topic><topic>Isoenzymes - metabolism</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Membranes</topic><topic>Muscle Fibers, Skeletal - enzymology</topic><topic>Muscular system</topic><topic>Ouabain - pharmacology</topic><topic>Oxidation-Reduction</topic><topic>Protein Subunits - metabolism</topic><topic>Rats</topic><topic>Rodents</topic><topic>Sodium - metabolism</topic><topic>Sodium-Potassium-Exchanging ATPase - antagonists & inhibitors</topic><topic>Sodium-Potassium-Exchanging ATPase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kristensen, Michael</creatorcontrib><creatorcontrib>Juel, Carsten</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of membrane biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kristensen, Michael</au><au>Juel, Carsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Na⁺,K⁺-ATPase Na⁺ Affinity in Rat Skeletal Muscle Fiber Types</atitle><jtitle>The Journal of membrane biology</jtitle><stitle>J Membrane Biol</stitle><addtitle>J Membr Biol</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>234</volume><issue>1</issue><spage>35</spage><epage>45</epage><pages>35-45</pages><issn>0022-2631</issn><eissn>1432-1424</eissn><abstract>Previous studies in expression systems have found different ion activation of the Na⁺/K⁺-ATPase isozymes, which suggest that different muscles have different ion affinities. The rate of ATP hydrolysis was used to quantify Na⁺,K⁺-ATPase activity, and the Na⁺ affinity of Na⁺,K⁺-ATPase was studied in total membranes from rat muscle and purified membranes from muscle with different fiber types. The Na⁺ affinity was higher (K m lower) in oxidative muscle compared with glycolytic muscle and in purified membranes from oxidative muscle compared with glycolytic muscle. Na⁺,K⁺-ATPase isoform analysis implied that heterodimers containing the β₁ isoform have a higher Na⁺ affinity than heterodimers containing the β₂ isoform. Immunoprecipitation experiments demonstrated that dimers with α₁ are responsible for approximately 36% of the total Na,K-ATPase activity. Selective inhibition of the α₂ isoform with ouabain suggested that heterodimers containing the α₁ isoform have a higher Na⁺ affinity than heterodimers containing the α₂ isoform. The estimated K m values for Na⁺ are 4.0, 5.5, 7.5 and 13 mM for α₁β₁, α₂β₁, α₁β₂ and α₂β₂, respectively. The affinity differences and isoform distributions imply that the degree of activation of Na⁺,K⁺-ATPase at physiological Na⁺ concentrations differs between muscles (oxidative and glycolytic) and between subcellular membrane domains with different isoform compositions. These differences may have consequences for ion balance across the muscle membrane.</abstract><cop>New York</cop><pub>New York : Springer-Verlag</pub><pmid>20177668</pmid><doi>10.1007/s00232-010-9237-6</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2631 |
ispartof | The Journal of membrane biology, 2010-03, Vol.234 (1), p.35-45 |
issn | 0022-2631 1432-1424 |
language | eng |
recordid | cdi_proquest_miscellaneous_733513709 |
source | MEDLINE; SpringerLink Journals |
subjects | Animals Biochemistry Biomedical and Life Sciences Cell Membrane - enzymology Cellular biology Enzymes Glycolysis Human Physiology Ions Isoenzymes - metabolism Life Sciences Male Membranes Muscle Fibers, Skeletal - enzymology Muscular system Ouabain - pharmacology Oxidation-Reduction Protein Subunits - metabolism Rats Rodents Sodium - metabolism Sodium-Potassium-Exchanging ATPase - antagonists & inhibitors Sodium-Potassium-Exchanging ATPase - metabolism |
title | Na⁺,K⁺-ATPase Na⁺ Affinity in Rat Skeletal Muscle Fiber Types |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Na%E2%81%BA,K%E2%81%BA-ATPase%20Na%E2%81%BA%20Affinity%20in%20Rat%20Skeletal%20Muscle%20Fiber%20Types&rft.jtitle=The%20Journal%20of%20membrane%20biology&rft.au=Kristensen,%20Michael&rft.date=2010-03-01&rft.volume=234&rft.issue=1&rft.spage=35&rft.epage=45&rft.pages=35-45&rft.issn=0022-2631&rft.eissn=1432-1424&rft_id=info:doi/10.1007/s00232-010-9237-6&rft_dat=%3Cproquest_cross%3E733513709%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217456287&rft_id=info:pmid/20177668&rfr_iscdi=true |