Bounds for the rth Characteristic Frequency of a Beaded String or of an Electrical Filter
The fundamental mode of vibration of a beaded string has a shape without change of sign. The rth higher normal mode of vibration has r changes of sign. Given any virtual shape of the string with r changes of sign, an algorithm is found that gives upper and lower bounds for the rth characteristic fre...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1980-06, Vol.77 (6), p.3120-3124 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3124 |
---|---|
container_issue | 6 |
container_start_page | 3120 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 77 |
creator | Barnsley, Michael F. Duffin, Richard J. |
description | The fundamental mode of vibration of a beaded string has a shape without change of sign. The rth higher normal mode of vibration has r changes of sign. Given any virtual shape of the string with r changes of sign, an algorithm is found that gives upper and lower bounds for the rth characteristic frequency as a function of the virtual shape. By making a certain transformation it is found that this algorithm holds for the characteristic frequencies of an inductor-capacitor network. Other transformations show that it applies to the rth eigenvalue of a Hermitian matrix. |
doi_str_mv | 10.1073/pnas.77.6.3120 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_733502973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>8687</jstor_id><sourcerecordid>8687</sourcerecordid><originalsourceid>FETCH-LOGICAL-j265t-5d6e04464f99c632cde053477ac88a2390eeffdaf327dd4179060c1e0525f5023</originalsourceid><addsrcrecordid>eNp9kb1PG0EQxVcRKBiTNlKKoK2gOjO3n7cFRbBsQEJKkaRItdrsBz7rfOfs7qHw37MIx4KGaqR5vzdPM4PQ5xpmNUh6se1Nmkk5EzNaE_iAJjWouhJMwQGaABBZNYywI3Sc0hoAFG_gIzqqBVekoXyCfl8NY-8SDkPEeeVxzCs8X5lobPaxTbm1eBn939H39hEPARt85Y3zDv_Ise3vcbE9d3u86LwtLWs6vGy7Yj5Bh8F0yX_a1Sn6tVz8nN9Ud9-vb-ff7qo1ETxX3AkPjAkWlLKCEus8cMqkNLZpDKEKvA_BmUCJdI7VUoEAWxeI8MCB0Cm6fJm7Hf9svLO-z9F0ehvbjYmPejCtfqv07UrfDw-aMsUFK_7znT8OZc-U9aZN1ned6f0wJi0pLTGqlCk6fZ20j_h_zQKc7YDylb0spRb6-Ts6jF25zL9cwK_vgUX_8qKvUx7iHmhEI-kTY3CXhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733502973</pqid></control><display><type>article</type><title>Bounds for the rth Characteristic Frequency of a Beaded String or of an Electrical Filter</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Barnsley, Michael F. ; Duffin, Richard J.</creator><creatorcontrib>Barnsley, Michael F. ; Duffin, Richard J.</creatorcontrib><description>The fundamental mode of vibration of a beaded string has a shape without change of sign. The rth higher normal mode of vibration has r changes of sign. Given any virtual shape of the string with r changes of sign, an algorithm is found that gives upper and lower bounds for the rth characteristic frequency as a function of the virtual shape. By making a certain transformation it is found that this algorithm holds for the characteristic frequencies of an inductor-capacitor network. Other transformations show that it applies to the rth eigenvalue of a Hermitian matrix.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.77.6.3120</identifier><identifier>PMID: 16592835</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Boundary conditions ; Eigenfunctions ; Eigenvalues ; Eigenvectors ; Inductors ; Mathematical functions ; Mathematical theorems ; Mathematical vectors ; Matrices ; Physical Sciences: Mathematics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1980-06, Vol.77 (6), p.3120-3124</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/77/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/8687$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/8687$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16592835$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barnsley, Michael F.</creatorcontrib><creatorcontrib>Duffin, Richard J.</creatorcontrib><title>Bounds for the rth Characteristic Frequency of a Beaded String or of an Electrical Filter</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The fundamental mode of vibration of a beaded string has a shape without change of sign. The rth higher normal mode of vibration has r changes of sign. Given any virtual shape of the string with r changes of sign, an algorithm is found that gives upper and lower bounds for the rth characteristic frequency as a function of the virtual shape. By making a certain transformation it is found that this algorithm holds for the characteristic frequencies of an inductor-capacitor network. Other transformations show that it applies to the rth eigenvalue of a Hermitian matrix.</description><subject>Boundary conditions</subject><subject>Eigenfunctions</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Inductors</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><subject>Mathematical vectors</subject><subject>Matrices</subject><subject>Physical Sciences: Mathematics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNp9kb1PG0EQxVcRKBiTNlKKoK2gOjO3n7cFRbBsQEJKkaRItdrsBz7rfOfs7qHw37MIx4KGaqR5vzdPM4PQ5xpmNUh6se1Nmkk5EzNaE_iAJjWouhJMwQGaABBZNYywI3Sc0hoAFG_gIzqqBVekoXyCfl8NY-8SDkPEeeVxzCs8X5lobPaxTbm1eBn939H39hEPARt85Y3zDv_Ise3vcbE9d3u86LwtLWs6vGy7Yj5Bh8F0yX_a1Sn6tVz8nN9Ud9-vb-ff7qo1ETxX3AkPjAkWlLKCEus8cMqkNLZpDKEKvA_BmUCJdI7VUoEAWxeI8MCB0Cm6fJm7Hf9svLO-z9F0ehvbjYmPejCtfqv07UrfDw-aMsUFK_7znT8OZc-U9aZN1ned6f0wJi0pLTGqlCk6fZ20j_h_zQKc7YDylb0spRb6-Ts6jF25zL9cwK_vgUX_8qKvUx7iHmhEI-kTY3CXhw</recordid><startdate>19800601</startdate><enddate>19800601</enddate><creator>Barnsley, Michael F.</creator><creator>Duffin, Richard J.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19800601</creationdate><title>Bounds for the rth Characteristic Frequency of a Beaded String or of an Electrical Filter</title><author>Barnsley, Michael F. ; Duffin, Richard J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j265t-5d6e04464f99c632cde053477ac88a2390eeffdaf327dd4179060c1e0525f5023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Boundary conditions</topic><topic>Eigenfunctions</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Inductors</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><topic>Mathematical vectors</topic><topic>Matrices</topic><topic>Physical Sciences: Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barnsley, Michael F.</creatorcontrib><creatorcontrib>Duffin, Richard J.</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barnsley, Michael F.</au><au>Duffin, Richard J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounds for the rth Characteristic Frequency of a Beaded String or of an Electrical Filter</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1980-06-01</date><risdate>1980</risdate><volume>77</volume><issue>6</issue><spage>3120</spage><epage>3124</epage><pages>3120-3124</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The fundamental mode of vibration of a beaded string has a shape without change of sign. The rth higher normal mode of vibration has r changes of sign. Given any virtual shape of the string with r changes of sign, an algorithm is found that gives upper and lower bounds for the rth characteristic frequency as a function of the virtual shape. By making a certain transformation it is found that this algorithm holds for the characteristic frequencies of an inductor-capacitor network. Other transformations show that it applies to the rth eigenvalue of a Hermitian matrix.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>16592835</pmid><doi>10.1073/pnas.77.6.3120</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1980-06, Vol.77 (6), p.3120-3124 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_733502973 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Boundary conditions Eigenfunctions Eigenvalues Eigenvectors Inductors Mathematical functions Mathematical theorems Mathematical vectors Matrices Physical Sciences: Mathematics |
title | Bounds for the rth Characteristic Frequency of a Beaded String or of an Electrical Filter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounds%20for%20the%20rth%20Characteristic%20Frequency%20of%20a%20Beaded%20String%20or%20of%20an%20Electrical%20Filter&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Barnsley,%20Michael%20F.&rft.date=1980-06-01&rft.volume=77&rft.issue=6&rft.spage=3120&rft.epage=3124&rft.pages=3120-3124&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.77.6.3120&rft_dat=%3Cjstor_proqu%3E8687%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733502973&rft_id=info:pmid/16592835&rft_jstor_id=8687&rfr_iscdi=true |