Surface Nanocrystallization for Bacterial Control
Stainless steel is commonly used in indwelling medical devices, food preparation, and heavy industry. Bacteria display reduced adherence to nanocrystallized stainless steel. In this article, we present quantitative information on the surface adhesive force, surface electron work function, and bacter...
Gespeichert in:
Veröffentlicht in: | Langmuir 2010-07, Vol.26 (13), p.10930-10934 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10934 |
---|---|
container_issue | 13 |
container_start_page | 10930 |
container_title | Langmuir |
container_volume | 26 |
creator | Yu, Bin Lesiuk, Adam Davis, Elisabeth Irvin, Randall T Li, D. Y |
description | Stainless steel is commonly used in indwelling medical devices, food preparation, and heavy industry. Bacteria display reduced adherence to nanocrystallized stainless steel. In this article, we present quantitative information on the surface adhesive force, surface electron work function, and bacterial adherence to surfaces of nanocrystallized stainless steel with differing grain sizes. Surface nanocrystallization was achieved by sandblasting followed by recovery treatment. The adhesive force of bacterial binding to nanocrystallized surfaces was measured using an atomic force microscope with a synthetic-peptide-coated AFM tip designed to mimic the bacterial binding site of Pseudomonas aeruginosa, a common pathogen known to form biofilms. The electron work function of the steel surfaces was measured, and bacterial binding assays were performed using subinoculated P. aeruginosa cultures. It was demonstrated that for nanograined steel surfaces, the adhesive force, peptide adherence, surface electron activity, and bacterial binding all decreased with decreasing grain size. |
doi_str_mv | 10.1021/la100859m |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733501664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733501664</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-1b399c36baf9ef877b94c6b6b74870c896cb51608a5eed6949cb8f6a42b5fe2e3</originalsourceid><addsrcrecordid>eNpt0DtPwzAUhmELgWgpDPwB1AUhhoAd30eouEkVDMAcHbu2lMqJi50M5dcT1NIuTGd59B3pReic4BuCS3IbgGCsuG4O0JjwEhdclfIQjbFktJBM0BE6yXmJMdaU6WM0KjGjlCg-RuS9Tx6sm75CG21a5w5CqL-hq2M79TFN78F2LtUQprPYdimGU3TkIWR3tr0T9Pn48DF7LuZvTy-zu3kBlLGuIIZqbakw4LXzSkqjmRVGGMmUxFZpYQ0nAivgzi2EZtoa5QWw0nDvSkcn6Gqzu0rxq3e5q5o6WxcCtC72uZKUckyEYIO83kibYs7J-WqV6gbSuiK4-g1U7QIN9mK72pvGLXbyr8gALrcAsoXgE7S2zntXajk0VHsHNlfL2Kd2iPHPwx_Y-3jK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733501664</pqid></control><display><type>article</type><title>Surface Nanocrystallization for Bacterial Control</title><source>ACS Publications</source><source>MEDLINE</source><creator>Yu, Bin ; Lesiuk, Adam ; Davis, Elisabeth ; Irvin, Randall T ; Li, D. Y</creator><creatorcontrib>Yu, Bin ; Lesiuk, Adam ; Davis, Elisabeth ; Irvin, Randall T ; Li, D. Y</creatorcontrib><description>Stainless steel is commonly used in indwelling medical devices, food preparation, and heavy industry. Bacteria display reduced adherence to nanocrystallized stainless steel. In this article, we present quantitative information on the surface adhesive force, surface electron work function, and bacterial adherence to surfaces of nanocrystallized stainless steel with differing grain sizes. Surface nanocrystallization was achieved by sandblasting followed by recovery treatment. The adhesive force of bacterial binding to nanocrystallized surfaces was measured using an atomic force microscope with a synthetic-peptide-coated AFM tip designed to mimic the bacterial binding site of Pseudomonas aeruginosa, a common pathogen known to form biofilms. The electron work function of the steel surfaces was measured, and bacterial binding assays were performed using subinoculated P. aeruginosa cultures. It was demonstrated that for nanograined steel surfaces, the adhesive force, peptide adherence, surface electron activity, and bacterial binding all decreased with decreasing grain size.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la100859m</identifier><identifier>PMID: 20433185</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Bacteria - growth & development ; Bacterial Adhesion - physiology ; Biofilms - growth & development ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Interfaces: Adsorption, Reactions, Films, Forces ; Microscopy, Atomic Force - methods ; Peptides - chemical synthesis ; Peptides - chemistry ; Pseudomonas aeruginosa - physiology ; Stainless Steel - chemistry ; Surface Properties</subject><ispartof>Langmuir, 2010-07, Vol.26 (13), p.10930-10934</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a344t-1b399c36baf9ef877b94c6b6b74870c896cb51608a5eed6949cb8f6a42b5fe2e3</citedby><cites>FETCH-LOGICAL-a344t-1b399c36baf9ef877b94c6b6b74870c896cb51608a5eed6949cb8f6a42b5fe2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la100859m$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la100859m$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22973498$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20433185$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Lesiuk, Adam</creatorcontrib><creatorcontrib>Davis, Elisabeth</creatorcontrib><creatorcontrib>Irvin, Randall T</creatorcontrib><creatorcontrib>Li, D. Y</creatorcontrib><title>Surface Nanocrystallization for Bacterial Control</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Stainless steel is commonly used in indwelling medical devices, food preparation, and heavy industry. Bacteria display reduced adherence to nanocrystallized stainless steel. In this article, we present quantitative information on the surface adhesive force, surface electron work function, and bacterial adherence to surfaces of nanocrystallized stainless steel with differing grain sizes. Surface nanocrystallization was achieved by sandblasting followed by recovery treatment. The adhesive force of bacterial binding to nanocrystallized surfaces was measured using an atomic force microscope with a synthetic-peptide-coated AFM tip designed to mimic the bacterial binding site of Pseudomonas aeruginosa, a common pathogen known to form biofilms. The electron work function of the steel surfaces was measured, and bacterial binding assays were performed using subinoculated P. aeruginosa cultures. It was demonstrated that for nanograined steel surfaces, the adhesive force, peptide adherence, surface electron activity, and bacterial binding all decreased with decreasing grain size.</description><subject>Bacteria - growth & development</subject><subject>Bacterial Adhesion - physiology</subject><subject>Biofilms - growth & development</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Interfaces: Adsorption, Reactions, Films, Forces</subject><subject>Microscopy, Atomic Force - methods</subject><subject>Peptides - chemical synthesis</subject><subject>Peptides - chemistry</subject><subject>Pseudomonas aeruginosa - physiology</subject><subject>Stainless Steel - chemistry</subject><subject>Surface Properties</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0DtPwzAUhmELgWgpDPwB1AUhhoAd30eouEkVDMAcHbu2lMqJi50M5dcT1NIuTGd59B3pReic4BuCS3IbgGCsuG4O0JjwEhdclfIQjbFktJBM0BE6yXmJMdaU6WM0KjGjlCg-RuS9Tx6sm75CG21a5w5CqL-hq2M79TFN78F2LtUQprPYdimGU3TkIWR3tr0T9Pn48DF7LuZvTy-zu3kBlLGuIIZqbakw4LXzSkqjmRVGGMmUxFZpYQ0nAivgzi2EZtoa5QWw0nDvSkcn6Gqzu0rxq3e5q5o6WxcCtC72uZKUckyEYIO83kibYs7J-WqV6gbSuiK4-g1U7QIN9mK72pvGLXbyr8gALrcAsoXgE7S2zntXajk0VHsHNlfL2Kd2iPHPwx_Y-3jK</recordid><startdate>20100706</startdate><enddate>20100706</enddate><creator>Yu, Bin</creator><creator>Lesiuk, Adam</creator><creator>Davis, Elisabeth</creator><creator>Irvin, Randall T</creator><creator>Li, D. Y</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100706</creationdate><title>Surface Nanocrystallization for Bacterial Control</title><author>Yu, Bin ; Lesiuk, Adam ; Davis, Elisabeth ; Irvin, Randall T ; Li, D. Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-1b399c36baf9ef877b94c6b6b74870c896cb51608a5eed6949cb8f6a42b5fe2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bacteria - growth & development</topic><topic>Bacterial Adhesion - physiology</topic><topic>Biofilms - growth & development</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Interfaces: Adsorption, Reactions, Films, Forces</topic><topic>Microscopy, Atomic Force - methods</topic><topic>Peptides - chemical synthesis</topic><topic>Peptides - chemistry</topic><topic>Pseudomonas aeruginosa - physiology</topic><topic>Stainless Steel - chemistry</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Bin</creatorcontrib><creatorcontrib>Lesiuk, Adam</creatorcontrib><creatorcontrib>Davis, Elisabeth</creatorcontrib><creatorcontrib>Irvin, Randall T</creatorcontrib><creatorcontrib>Li, D. Y</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Bin</au><au>Lesiuk, Adam</au><au>Davis, Elisabeth</au><au>Irvin, Randall T</au><au>Li, D. Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Nanocrystallization for Bacterial Control</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2010-07-06</date><risdate>2010</risdate><volume>26</volume><issue>13</issue><spage>10930</spage><epage>10934</epage><pages>10930-10934</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Stainless steel is commonly used in indwelling medical devices, food preparation, and heavy industry. Bacteria display reduced adherence to nanocrystallized stainless steel. In this article, we present quantitative information on the surface adhesive force, surface electron work function, and bacterial adherence to surfaces of nanocrystallized stainless steel with differing grain sizes. Surface nanocrystallization was achieved by sandblasting followed by recovery treatment. The adhesive force of bacterial binding to nanocrystallized surfaces was measured using an atomic force microscope with a synthetic-peptide-coated AFM tip designed to mimic the bacterial binding site of Pseudomonas aeruginosa, a common pathogen known to form biofilms. The electron work function of the steel surfaces was measured, and bacterial binding assays were performed using subinoculated P. aeruginosa cultures. It was demonstrated that for nanograined steel surfaces, the adhesive force, peptide adherence, surface electron activity, and bacterial binding all decreased with decreasing grain size.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20433185</pmid><doi>10.1021/la100859m</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2010-07, Vol.26 (13), p.10930-10934 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_733501664 |
source | ACS Publications; MEDLINE |
subjects | Bacteria - growth & development Bacterial Adhesion - physiology Biofilms - growth & development Chemistry Exact sciences and technology General and physical chemistry Interfaces: Adsorption, Reactions, Films, Forces Microscopy, Atomic Force - methods Peptides - chemical synthesis Peptides - chemistry Pseudomonas aeruginosa - physiology Stainless Steel - chemistry Surface Properties |
title | Surface Nanocrystallization for Bacterial Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Nanocrystallization%20for%20Bacterial%20Control&rft.jtitle=Langmuir&rft.au=Yu,%20Bin&rft.date=2010-07-06&rft.volume=26&rft.issue=13&rft.spage=10930&rft.epage=10934&rft.pages=10930-10934&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la100859m&rft_dat=%3Cproquest_cross%3E733501664%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733501664&rft_id=info:pmid/20433185&rfr_iscdi=true |