Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L

Gibberellins A12 ($\text{GA}_{12}$), $\text{GA}_{53}$, $\text{GA}_{44}$, $\text{GA}_{19}$, $\text{GA}_{17}$, $\text{GA}_{20}$, $\text{GA}_{29}$, $\text{GA}_{1}$, and $\text{GA}_{8}$ have been identified from extracts of vegetative shoots of normal (wild type) maize using full scan capillary gas chro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 1988-12, Vol.88 (4), p.1367-1372
Hauptverfasser: Fujioka, S, Yamane, H, Spray, C.R, Gaskin, P, MacMillan, J, Phinney, B.O, Takahashi, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1372
container_issue 4
container_start_page 1367
container_title Plant physiology (Bethesda)
container_volume 88
creator Fujioka, S
Yamane, H
Spray, C.R
Gaskin, P
MacMillan, J
Phinney, B.O
Takahashi, N
description Gibberellins A12 ($\text{GA}_{12}$), $\text{GA}_{53}$, $\text{GA}_{44}$, $\text{GA}_{19}$, $\text{GA}_{17}$, $\text{GA}_{20}$, $\text{GA}_{29}$, $\text{GA}_{1}$, and $\text{GA}_{8}$ have been identified from extracts of vegetative shoots of normal (wild type) maize using full scan capillary gas chromatography-mass spectrometry and Kovats retention indices. Seven of these gibberellins (GAs) have been quantified by capillary gas chromatography-selected ion monitoring using internal standards of $[{}^{14}\text{C}{}_{4}]\text{GA}_{53}$, $[{}^{14}\text{C}{}_{4}]\text{GA}_{44}$, $[{}^{2}\text{H}{}_{2}]\text{GA}_{19}$, $[{}^{13}\text{C}{}_{1}]\text{GA}_{20}$, $[{}^{13}\text{C}{}_{1}]\text{GA}_{29}$, $[{}^{13}\text{C}{}_{1}]\text{GA}_{1}$, and $[{}^{13}\text{C}{}_{1}]\text{GA}_{8}$. Quantitative data from extracts of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings support the operation of the early 13-hydroxylation pathway in vegetative shoots of Zea mays. These data support the positions in the pathway blocked by the mutants, previously assigned by bioassay data and metabolic studies. The GA levels in dwarf-2, dwarf-3, and dwarf-5 were equal to, or less than, 2.0 nanograms per 100 grams fresh weight, showing that these mutants are blocked for steps early in the pathway. In dwarf-1, the level of $\text{GA}_{1}$ was very low (0.23 nanograms per 100 grams fresh weight) and less than 2% of that in normal shoots, while $\text{GA}_{20}$ and $\text{GA}_{29}$ accumulated to levels over 10 times those in normals; these results confirm that the dwarf-1 mutant blocks the conversion of $\text{GA}_{20}$ to $\text{GA}_{1}$. Since the level of GAs beyond the blocked step for each mutant is greater than zero, each mutated gene probably codes for an altered gene product, thus leading to impaired enzyme activities.
doi_str_mv 10.1104/pp.88.4.1367
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_733493840</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4271761</jstor_id><sourcerecordid>4271761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-bdbeb01d371459efd4bca8f32500228e00fbbc776322fc71e65b72580cb0e1a73</originalsourceid><addsrcrecordid>eNpFkUtv1DAUhS0EokNhxwoh5AUSm8ngV2LPsqpoQRoJIeiGjXWdXA-p8qqdFM3_4AfjmaStNz72_e6xfA8hbznbcM7U52HYGLNRGy4L_YyseC5FJnJlnpMVY0kzY7Zn5FWMt4wxLrl6Sc54kZYqzIr8-zFBU48w1vdIoavo3QTd-HQBzSFipL2n-9o5DNg0dRdp3dF73OOCxT99P56grg8tNGta_YXgM_4gxIOQ69Mj8yGnEbFKfvtT728E2sIh0t1r8sJDE_HNsp-Tm6svvy6_Zrvv198uL3ZZKQs5Zq5y6BivpOYq36KvlCvBeClyxoQwyJh3rtS6kEL4UnMscqdFbljpGHLQ8px8mn2H0N9NGEfb1rFMX4QO-ylaLaXaSqNYItczWYY-xoDeDqFuIRwsZ_YYgx0Ga4xV9hhDwj8sxpNrsXqCl7kn4OMCQCyh8QG6so6PXFGkpPTR5_2M3caxD49lJTTXBU_ld3PZQ29hH5LDzU-zZWkcWv4HR7-h7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733493840</pqid></control><display><type>article</type><title>Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L</title><source>Jstor Complete Legacy</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Fujioka, S ; Yamane, H ; Spray, C.R ; Gaskin, P ; MacMillan, J ; Phinney, B.O ; Takahashi, N</creator><creatorcontrib>Fujioka, S ; Yamane, H ; Spray, C.R ; Gaskin, P ; MacMillan, J ; Phinney, B.O ; Takahashi, N</creatorcontrib><description>Gibberellins A12 ($\text{GA}_{12}$), $\text{GA}_{53}$, $\text{GA}_{44}$, $\text{GA}_{19}$, $\text{GA}_{17}$, $\text{GA}_{20}$, $\text{GA}_{29}$, $\text{GA}_{1}$, and $\text{GA}_{8}$ have been identified from extracts of vegetative shoots of normal (wild type) maize using full scan capillary gas chromatography-mass spectrometry and Kovats retention indices. Seven of these gibberellins (GAs) have been quantified by capillary gas chromatography-selected ion monitoring using internal standards of $[{}^{14}\text{C}{}_{4}]\text{GA}_{53}$, $[{}^{14}\text{C}{}_{4}]\text{GA}_{44}$, $[{}^{2}\text{H}{}_{2}]\text{GA}_{19}$, $[{}^{13}\text{C}{}_{1}]\text{GA}_{20}$, $[{}^{13}\text{C}{}_{1}]\text{GA}_{29}$, $[{}^{13}\text{C}{}_{1}]\text{GA}_{1}$, and $[{}^{13}\text{C}{}_{1}]\text{GA}_{8}$. Quantitative data from extracts of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings support the operation of the early 13-hydroxylation pathway in vegetative shoots of Zea mays. These data support the positions in the pathway blocked by the mutants, previously assigned by bioassay data and metabolic studies. The GA levels in dwarf-2, dwarf-3, and dwarf-5 were equal to, or less than, 2.0 nanograms per 100 grams fresh weight, showing that these mutants are blocked for steps early in the pathway. In dwarf-1, the level of $\text{GA}_{1}$ was very low (0.23 nanograms per 100 grams fresh weight) and less than 2% of that in normal shoots, while $\text{GA}_{20}$ and $\text{GA}_{29}$ accumulated to levels over 10 times those in normals; these results confirm that the dwarf-1 mutant blocks the conversion of $\text{GA}_{20}$ to $\text{GA}_{1}$. Since the level of GAs beyond the blocked step for each mutant is greater than zero, each mutated gene probably codes for an altered gene product, thus leading to impaired enzyme activities.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.88.4.1367</identifier><identifier>PMID: 16666468</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Physiologists</publisher><subject>ACIDO GIBERELICO ; ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; Atoms ; Bioassay ; BIOCHEMICAL PATHWAYS ; Biological and medical sciences ; CODE GENETIQUE ; CODIGO GENETICO ; Corn ; DWARFS ; ENANO ; ENZYMIC ACTIVITY ; Fundamental and applied biological sciences. Psychology ; Gels ; GENETIC CODE ; GIBBERELLINE ; Gibberellins ; Growth regulators ; hydroxylation pathways ; Metabolism ; MUTANT ; MUTANTES ; MUTANTS ; NAIN ; Plant physiology and development ; Plants ; Room temperature ; Seedlings ; Solvents ; STEMS ; TALLO ; TIGE ; VARIEDADES ; VARIETE ; VARIETIES ; VIA BIOQUIMICA DEL METABOLISMO ; VOIE BIOCHIMIQUE DU METABOLISME ; ZEA MAYS</subject><ispartof>Plant physiology (Bethesda), 1988-12, Vol.88 (4), p.1367-1372</ispartof><rights>Copyright 1988 The American Society of Plant Physiologists</rights><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-bdbeb01d371459efd4bca8f32500228e00fbbc776322fc71e65b72580cb0e1a73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4271761$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4271761$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6601377$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16666468$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujioka, S</creatorcontrib><creatorcontrib>Yamane, H</creatorcontrib><creatorcontrib>Spray, C.R</creatorcontrib><creatorcontrib>Gaskin, P</creatorcontrib><creatorcontrib>MacMillan, J</creatorcontrib><creatorcontrib>Phinney, B.O</creatorcontrib><creatorcontrib>Takahashi, N</creatorcontrib><title>Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Gibberellins A12 ($\text{GA}_{12}$), $\text{GA}_{53}$, $\text{GA}_{44}$, $\text{GA}_{19}$, $\text{GA}_{17}$, $\text{GA}_{20}$, $\text{GA}_{29}$, $\text{GA}_{1}$, and $\text{GA}_{8}$ have been identified from extracts of vegetative shoots of normal (wild type) maize using full scan capillary gas chromatography-mass spectrometry and Kovats retention indices. Seven of these gibberellins (GAs) have been quantified by capillary gas chromatography-selected ion monitoring using internal standards of $[{}^{14}\text{C}{}_{4}]\text{GA}_{53}$, $[{}^{14}\text{C}{}_{4}]\text{GA}_{44}$, $[{}^{2}\text{H}{}_{2}]\text{GA}_{19}$, $[{}^{13}\text{C}{}_{1}]\text{GA}_{20}$, $[{}^{13}\text{C}{}_{1}]\text{GA}_{29}$, $[{}^{13}\text{C}{}_{1}]\text{GA}_{1}$, and $[{}^{13}\text{C}{}_{1}]\text{GA}_{8}$. Quantitative data from extracts of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings support the operation of the early 13-hydroxylation pathway in vegetative shoots of Zea mays. These data support the positions in the pathway blocked by the mutants, previously assigned by bioassay data and metabolic studies. The GA levels in dwarf-2, dwarf-3, and dwarf-5 were equal to, or less than, 2.0 nanograms per 100 grams fresh weight, showing that these mutants are blocked for steps early in the pathway. In dwarf-1, the level of $\text{GA}_{1}$ was very low (0.23 nanograms per 100 grams fresh weight) and less than 2% of that in normal shoots, while $\text{GA}_{20}$ and $\text{GA}_{29}$ accumulated to levels over 10 times those in normals; these results confirm that the dwarf-1 mutant blocks the conversion of $\text{GA}_{20}$ to $\text{GA}_{1}$. Since the level of GAs beyond the blocked step for each mutant is greater than zero, each mutated gene probably codes for an altered gene product, thus leading to impaired enzyme activities.</description><subject>ACIDO GIBERELICO</subject><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>Atoms</subject><subject>Bioassay</subject><subject>BIOCHEMICAL PATHWAYS</subject><subject>Biological and medical sciences</subject><subject>CODE GENETIQUE</subject><subject>CODIGO GENETICO</subject><subject>Corn</subject><subject>DWARFS</subject><subject>ENANO</subject><subject>ENZYMIC ACTIVITY</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gels</subject><subject>GENETIC CODE</subject><subject>GIBBERELLINE</subject><subject>Gibberellins</subject><subject>Growth regulators</subject><subject>hydroxylation pathways</subject><subject>Metabolism</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>NAIN</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Room temperature</subject><subject>Seedlings</subject><subject>Solvents</subject><subject>STEMS</subject><subject>TALLO</subject><subject>TIGE</subject><subject>VARIEDADES</subject><subject>VARIETE</subject><subject>VARIETIES</subject><subject>VIA BIOQUIMICA DEL METABOLISMO</subject><subject>VOIE BIOCHIMIQUE DU METABOLISME</subject><subject>ZEA MAYS</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNpFkUtv1DAUhS0EokNhxwoh5AUSm8ngV2LPsqpoQRoJIeiGjXWdXA-p8qqdFM3_4AfjmaStNz72_e6xfA8hbznbcM7U52HYGLNRGy4L_YyseC5FJnJlnpMVY0kzY7Zn5FWMt4wxLrl6Sc54kZYqzIr8-zFBU48w1vdIoavo3QTd-HQBzSFipL2n-9o5DNg0dRdp3dF73OOCxT99P56grg8tNGta_YXgM_4gxIOQ69Mj8yGnEbFKfvtT728E2sIh0t1r8sJDE_HNsp-Tm6svvy6_Zrvv198uL3ZZKQs5Zq5y6BivpOYq36KvlCvBeClyxoQwyJh3rtS6kEL4UnMscqdFbljpGHLQ8px8mn2H0N9NGEfb1rFMX4QO-ylaLaXaSqNYItczWYY-xoDeDqFuIRwsZ_YYgx0Ga4xV9hhDwj8sxpNrsXqCl7kn4OMCQCyh8QG6so6PXFGkpPTR5_2M3caxD49lJTTXBU_ld3PZQ29hH5LDzU-zZWkcWv4HR7-h7w</recordid><startdate>19881201</startdate><enddate>19881201</enddate><creator>Fujioka, S</creator><creator>Yamane, H</creator><creator>Spray, C.R</creator><creator>Gaskin, P</creator><creator>MacMillan, J</creator><creator>Phinney, B.O</creator><creator>Takahashi, N</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19881201</creationdate><title>Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L</title><author>Fujioka, S ; Yamane, H ; Spray, C.R ; Gaskin, P ; MacMillan, J ; Phinney, B.O ; Takahashi, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-bdbeb01d371459efd4bca8f32500228e00fbbc776322fc71e65b72580cb0e1a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>ACIDO GIBERELICO</topic><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>Atoms</topic><topic>Bioassay</topic><topic>BIOCHEMICAL PATHWAYS</topic><topic>Biological and medical sciences</topic><topic>CODE GENETIQUE</topic><topic>CODIGO GENETICO</topic><topic>Corn</topic><topic>DWARFS</topic><topic>ENANO</topic><topic>ENZYMIC ACTIVITY</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gels</topic><topic>GENETIC CODE</topic><topic>GIBBERELLINE</topic><topic>Gibberellins</topic><topic>Growth regulators</topic><topic>hydroxylation pathways</topic><topic>Metabolism</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>NAIN</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Room temperature</topic><topic>Seedlings</topic><topic>Solvents</topic><topic>STEMS</topic><topic>TALLO</topic><topic>TIGE</topic><topic>VARIEDADES</topic><topic>VARIETE</topic><topic>VARIETIES</topic><topic>VIA BIOQUIMICA DEL METABOLISMO</topic><topic>VOIE BIOCHIMIQUE DU METABOLISME</topic><topic>ZEA MAYS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujioka, S</creatorcontrib><creatorcontrib>Yamane, H</creatorcontrib><creatorcontrib>Spray, C.R</creatorcontrib><creatorcontrib>Gaskin, P</creatorcontrib><creatorcontrib>MacMillan, J</creatorcontrib><creatorcontrib>Phinney, B.O</creatorcontrib><creatorcontrib>Takahashi, N</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujioka, S</au><au>Yamane, H</au><au>Spray, C.R</au><au>Gaskin, P</au><au>MacMillan, J</au><au>Phinney, B.O</au><au>Takahashi, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>1988-12-01</date><risdate>1988</risdate><volume>88</volume><issue>4</issue><spage>1367</spage><epage>1372</epage><pages>1367-1372</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Gibberellins A12 ($\text{GA}_{12}$), $\text{GA}_{53}$, $\text{GA}_{44}$, $\text{GA}_{19}$, $\text{GA}_{17}$, $\text{GA}_{20}$, $\text{GA}_{29}$, $\text{GA}_{1}$, and $\text{GA}_{8}$ have been identified from extracts of vegetative shoots of normal (wild type) maize using full scan capillary gas chromatography-mass spectrometry and Kovats retention indices. Seven of these gibberellins (GAs) have been quantified by capillary gas chromatography-selected ion monitoring using internal standards of $[{}^{14}\text{C}{}_{4}]\text{GA}_{53}$, $[{}^{14}\text{C}{}_{4}]\text{GA}_{44}$, $[{}^{2}\text{H}{}_{2}]\text{GA}_{19}$, $[{}^{13}\text{C}{}_{1}]\text{GA}_{20}$, $[{}^{13}\text{C}{}_{1}]\text{GA}_{29}$, $[{}^{13}\text{C}{}_{1}]\text{GA}_{1}$, and $[{}^{13}\text{C}{}_{1}]\text{GA}_{8}$. Quantitative data from extracts of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings support the operation of the early 13-hydroxylation pathway in vegetative shoots of Zea mays. These data support the positions in the pathway blocked by the mutants, previously assigned by bioassay data and metabolic studies. The GA levels in dwarf-2, dwarf-3, and dwarf-5 were equal to, or less than, 2.0 nanograms per 100 grams fresh weight, showing that these mutants are blocked for steps early in the pathway. In dwarf-1, the level of $\text{GA}_{1}$ was very low (0.23 nanograms per 100 grams fresh weight) and less than 2% of that in normal shoots, while $\text{GA}_{20}$ and $\text{GA}_{29}$ accumulated to levels over 10 times those in normals; these results confirm that the dwarf-1 mutant blocks the conversion of $\text{GA}_{20}$ to $\text{GA}_{1}$. Since the level of GAs beyond the blocked step for each mutant is greater than zero, each mutated gene probably codes for an altered gene product, thus leading to impaired enzyme activities.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Physiologists</pub><pmid>16666468</pmid><doi>10.1104/pp.88.4.1367</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 1988-12, Vol.88 (4), p.1367-1372
issn 0032-0889
1532-2548
language eng
recordid cdi_proquest_miscellaneous_733493840
source Jstor Complete Legacy; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects ACIDO GIBERELICO
ACTIVIDAD ENZIMATICA
ACTIVITE ENZYMATIQUE
Atoms
Bioassay
BIOCHEMICAL PATHWAYS
Biological and medical sciences
CODE GENETIQUE
CODIGO GENETICO
Corn
DWARFS
ENANO
ENZYMIC ACTIVITY
Fundamental and applied biological sciences. Psychology
Gels
GENETIC CODE
GIBBERELLINE
Gibberellins
Growth regulators
hydroxylation pathways
Metabolism
MUTANT
MUTANTES
MUTANTS
NAIN
Plant physiology and development
Plants
Room temperature
Seedlings
Solvents
STEMS
TALLO
TIGE
VARIEDADES
VARIETE
VARIETIES
VIA BIOQUIMICA DEL METABOLISMO
VOIE BIOCHIMIQUE DU METABOLISME
ZEA MAYS
title Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A55%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Qualitative%20and%20quantitative%20analyses%20of%20gibberellins%20in%20vegetative%20shoots%20of%20normal,%20dwarf-1,%20dwarf-2,%20dwarf-3,%20and%20dwarf-5%20seedlings%20of%20Zea%20mays%20L&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Fujioka,%20S&rft.date=1988-12-01&rft.volume=88&rft.issue=4&rft.spage=1367&rft.epage=1372&rft.pages=1367-1372&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.88.4.1367&rft_dat=%3Cjstor_proqu%3E4271761%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733493840&rft_id=info:pmid/16666468&rft_jstor_id=4271761&rfr_iscdi=true