Diacylglycerol acyltransferase in maturing oil seeds of maize and other species
Diacylglycerol acyltransferase (EC 2.3.1.20) activity was detected in the microsomal fractions of maturing maize scutellum, soybean cotyledon, peanut cotyledon, and castor bean endosperm. The activity detected was high enough to account for the in vivo rate of triacylglycerol synthesis. The activity...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 1986-11, Vol.82 (3), p.813-820 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diacylglycerol acyltransferase (EC 2.3.1.20) activity was detected in the microsomal fractions of maturing maize scutellum, soybean cotyledon, peanut cotyledon, and castor bean endosperm. The activity detected was high enough to account for the in vivo rate of triacylglycerol synthesis. The activity of the maize enzyme was characterized using diolein micelles prepared by sonication in Tween 20 as the substrate. The activity was highest at pH values of 6 to 7. The activity was proportional to the amount of enzyme added, and the reaction rate was linear for about 2 minutes. The enzyme was not inactivated by Tween 20, Zwitterion 3-08, Triton-X 100, and cholate, but was inactivated completely by sodium dodecyl sulfate. The enzyme was active on linoleoyl coenzyme A (CoA), palmitoyl CoA, and oleoyl CoA, although the activity was highest on linoleoyl CoA. Endogenous diacylglycerol was present in the microsomes, and the enzyme activity was only partially dependent on the addition of external diolein. Subcellular fractionation of the total scutellum extract in sucrose density gradients was performed. By comparing the migration of the enzyme between rate and equilibrium centrifugation, and between equilibrium centrifugation in the presence and absence of magnesium ions in the preparative media, the enzyme was shown to be associated with the rough endoplasmic reticulum. Some of the above findings on the maize enzyme were extended to the enzymes from castor bean, soybean, and peanuts. |
---|---|
ISSN: | 0032-0889 1532-2548 |
DOI: | 10.1104/pp.82.3.813 |