Nonphotosynthetic retardation of chloroplast senescence by light
Excised apical portions of green wheat leaf sections were treated with aminotriazole to prevent formation of new chloroplasts. Illumination retarded the decline in chlorophyll content per leaf section, the disintegration of chloroplast ultrastructure, and the loss of capacity for photosynthetic carb...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 1969-11, Vol.44 (11), p.1619-1628 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1628 |
---|---|
container_issue | 11 |
container_start_page | 1619 |
container_title | Plant physiology (Bethesda) |
container_volume | 44 |
creator | Haber, A.H Thompson, P.J Walne, P.L Triplett, L.L |
description | Excised apical portions of green wheat leaf sections were treated with aminotriazole to prevent formation of new chloroplasts. Illumination retarded the decline in chlorophyll content per leaf section, the disintegration of chloroplast ultrastructure, and the loss of capacity for photosynthetic carbon fixation. We interpret these 3 effects of illumination as facets of a single light effect in retarding chloroplast senescence. This light effect in retarding chloroplast senescence has features differing from characteristics of photosynthetic carbon fixation. For example, A) application of the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea did not decrease, and may have even slightly increased, the effectiveness of light; B) although the action spectrum contains peaks in the blue and red regions, it differs from the action spectrum for photosynthetic CO2 assimilation in wheat; C) in nonphotosynthesizing tissue, application of sugars did not retard chloroplast senescence; D) light saturation was achieved by only a few hundred $\text{microwatts}/\text{cm}^{2}$. Considered together with the well-known light requirement for chloroplast formation, our results indicate that light has a dual, photomorphogenetic control in maintaining the green status of the plant by also exerting a second effect: retarding of senescence of chloroplasts already present. |
doi_str_mv | 10.1104/pp.44.11.1619 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_733483681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4261883</jstor_id><sourcerecordid>4261883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3249-1e86d78e4a5a2dcc39a7ad7274310f96eea6fcd8af4cc63d233b5c521bf28c73</originalsourceid><addsrcrecordid>eNpFkD1PwzAQhi0EoqUwsiHIxpTisx3b2UAVX1IFA2W2HMdpU6VxsN2h_x5XrWC6V3of3Z0ehK4BTwEwexiGKWMpToFDeYLGUFCSk4LJUzTGOGUsZTlCFyGsMcZAgZ2jEXBeCMLKMXr8cP2wctGFXR9XNrYm8zZqX-vYuj5zTWZWnfNu6HSIWbC9Dcb2xmbVLuva5SpeorNGd8FeHecELV6eF7O3fP75-j57mueGpkM5WMlrIS3ThSa1MbTUQteCCEYBNyW3VvPG1FI3zBhOa0JpVZiCQNUQaQSdoPvD2sG7n60NUW3a9EnX6d66bVCCUiYpl5DI_EAa70LwtlGDbzfa7xRgtVemhkExlqLaK0v87XHzttrY-p8-OkrAzQFYh-j8X88IBylpqu8OdaOd0kvfBvX9RZJpDCAZE4L-AmOgepI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733483681</pqid></control><display><type>article</type><title>Nonphotosynthetic retardation of chloroplast senescence by light</title><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Haber, A.H ; Thompson, P.J ; Walne, P.L ; Triplett, L.L</creator><creatorcontrib>Haber, A.H ; Thompson, P.J ; Walne, P.L ; Triplett, L.L</creatorcontrib><description>Excised apical portions of green wheat leaf sections were treated with aminotriazole to prevent formation of new chloroplasts. Illumination retarded the decline in chlorophyll content per leaf section, the disintegration of chloroplast ultrastructure, and the loss of capacity for photosynthetic carbon fixation. We interpret these 3 effects of illumination as facets of a single light effect in retarding chloroplast senescence. This light effect in retarding chloroplast senescence has features differing from characteristics of photosynthetic carbon fixation. For example, A) application of the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea did not decrease, and may have even slightly increased, the effectiveness of light; B) although the action spectrum contains peaks in the blue and red regions, it differs from the action spectrum for photosynthetic CO2 assimilation in wheat; C) in nonphotosynthesizing tissue, application of sugars did not retard chloroplast senescence; D) light saturation was achieved by only a few hundred $\text{microwatts}/\text{cm}^{2}$. Considered together with the well-known light requirement for chloroplast formation, our results indicate that light has a dual, photomorphogenetic control in maintaining the green status of the plant by also exerting a second effect: retarding of senescence of chloroplasts already present.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.44.11.1619</identifier><identifier>PMID: 16657249</identifier><language>eng</language><publisher>United States: American Society of Plant Physiologists</publisher><subject>botany ; Chlorophylls ; Chloroplasts ; Leaves ; Light ; Luminous intensity ; Optical filters ; Photosynthesis ; Plant Science and Plant Products ; Plants ; Seedlings ; Visible spectrum</subject><ispartof>Plant physiology (Bethesda), 1969-11, Vol.44 (11), p.1619-1628</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3249-1e86d78e4a5a2dcc39a7ad7274310f96eea6fcd8af4cc63d233b5c521bf28c73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4261883$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4261883$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16657249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haber, A.H</creatorcontrib><creatorcontrib>Thompson, P.J</creatorcontrib><creatorcontrib>Walne, P.L</creatorcontrib><creatorcontrib>Triplett, L.L</creatorcontrib><title>Nonphotosynthetic retardation of chloroplast senescence by light</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Excised apical portions of green wheat leaf sections were treated with aminotriazole to prevent formation of new chloroplasts. Illumination retarded the decline in chlorophyll content per leaf section, the disintegration of chloroplast ultrastructure, and the loss of capacity for photosynthetic carbon fixation. We interpret these 3 effects of illumination as facets of a single light effect in retarding chloroplast senescence. This light effect in retarding chloroplast senescence has features differing from characteristics of photosynthetic carbon fixation. For example, A) application of the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea did not decrease, and may have even slightly increased, the effectiveness of light; B) although the action spectrum contains peaks in the blue and red regions, it differs from the action spectrum for photosynthetic CO2 assimilation in wheat; C) in nonphotosynthesizing tissue, application of sugars did not retard chloroplast senescence; D) light saturation was achieved by only a few hundred $\text{microwatts}/\text{cm}^{2}$. Considered together with the well-known light requirement for chloroplast formation, our results indicate that light has a dual, photomorphogenetic control in maintaining the green status of the plant by also exerting a second effect: retarding of senescence of chloroplasts already present.</description><subject>botany</subject><subject>Chlorophylls</subject><subject>Chloroplasts</subject><subject>Leaves</subject><subject>Light</subject><subject>Luminous intensity</subject><subject>Optical filters</subject><subject>Photosynthesis</subject><subject>Plant Science and Plant Products</subject><subject>Plants</subject><subject>Seedlings</subject><subject>Visible spectrum</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1969</creationdate><recordtype>article</recordtype><recordid>eNpFkD1PwzAQhi0EoqUwsiHIxpTisx3b2UAVX1IFA2W2HMdpU6VxsN2h_x5XrWC6V3of3Z0ehK4BTwEwexiGKWMpToFDeYLGUFCSk4LJUzTGOGUsZTlCFyGsMcZAgZ2jEXBeCMLKMXr8cP2wctGFXR9XNrYm8zZqX-vYuj5zTWZWnfNu6HSIWbC9Dcb2xmbVLuva5SpeorNGd8FeHecELV6eF7O3fP75-j57mueGpkM5WMlrIS3ThSa1MbTUQteCCEYBNyW3VvPG1FI3zBhOa0JpVZiCQNUQaQSdoPvD2sG7n60NUW3a9EnX6d66bVCCUiYpl5DI_EAa70LwtlGDbzfa7xRgtVemhkExlqLaK0v87XHzttrY-p8-OkrAzQFYh-j8X88IBylpqu8OdaOd0kvfBvX9RZJpDCAZE4L-AmOgepI</recordid><startdate>196911</startdate><enddate>196911</enddate><creator>Haber, A.H</creator><creator>Thompson, P.J</creator><creator>Walne, P.L</creator><creator>Triplett, L.L</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>196911</creationdate><title>Nonphotosynthetic retardation of chloroplast senescence by light</title><author>Haber, A.H ; Thompson, P.J ; Walne, P.L ; Triplett, L.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3249-1e86d78e4a5a2dcc39a7ad7274310f96eea6fcd8af4cc63d233b5c521bf28c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1969</creationdate><topic>botany</topic><topic>Chlorophylls</topic><topic>Chloroplasts</topic><topic>Leaves</topic><topic>Light</topic><topic>Luminous intensity</topic><topic>Optical filters</topic><topic>Photosynthesis</topic><topic>Plant Science and Plant Products</topic><topic>Plants</topic><topic>Seedlings</topic><topic>Visible spectrum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haber, A.H</creatorcontrib><creatorcontrib>Thompson, P.J</creatorcontrib><creatorcontrib>Walne, P.L</creatorcontrib><creatorcontrib>Triplett, L.L</creatorcontrib><collection>AGRIS</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haber, A.H</au><au>Thompson, P.J</au><au>Walne, P.L</au><au>Triplett, L.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonphotosynthetic retardation of chloroplast senescence by light</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>1969-11</date><risdate>1969</risdate><volume>44</volume><issue>11</issue><spage>1619</spage><epage>1628</epage><pages>1619-1628</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><abstract>Excised apical portions of green wheat leaf sections were treated with aminotriazole to prevent formation of new chloroplasts. Illumination retarded the decline in chlorophyll content per leaf section, the disintegration of chloroplast ultrastructure, and the loss of capacity for photosynthetic carbon fixation. We interpret these 3 effects of illumination as facets of a single light effect in retarding chloroplast senescence. This light effect in retarding chloroplast senescence has features differing from characteristics of photosynthetic carbon fixation. For example, A) application of the photosynthetic inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea did not decrease, and may have even slightly increased, the effectiveness of light; B) although the action spectrum contains peaks in the blue and red regions, it differs from the action spectrum for photosynthetic CO2 assimilation in wheat; C) in nonphotosynthesizing tissue, application of sugars did not retard chloroplast senescence; D) light saturation was achieved by only a few hundred $\text{microwatts}/\text{cm}^{2}$. Considered together with the well-known light requirement for chloroplast formation, our results indicate that light has a dual, photomorphogenetic control in maintaining the green status of the plant by also exerting a second effect: retarding of senescence of chloroplasts already present.</abstract><cop>United States</cop><pub>American Society of Plant Physiologists</pub><pmid>16657249</pmid><doi>10.1104/pp.44.11.1619</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 1969-11, Vol.44 (11), p.1619-1628 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_proquest_miscellaneous_733483681 |
source | JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | botany Chlorophylls Chloroplasts Leaves Light Luminous intensity Optical filters Photosynthesis Plant Science and Plant Products Plants Seedlings Visible spectrum |
title | Nonphotosynthetic retardation of chloroplast senescence by light |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonphotosynthetic%20retardation%20of%20chloroplast%20senescence%20by%20light&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Haber,%20A.H&rft.date=1969-11&rft.volume=44&rft.issue=11&rft.spage=1619&rft.epage=1628&rft.pages=1619-1628&rft.issn=0032-0889&rft.eissn=1532-2548&rft_id=info:doi/10.1104/pp.44.11.1619&rft_dat=%3Cjstor_proqu%3E4261883%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733483681&rft_id=info:pmid/16657249&rft_jstor_id=4261883&rfr_iscdi=true |