Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime

We reveal that there exists a class of graphene structures (a subclass of bilayer graphene nanoribbons) which has an exceptionally strong optical response in the terahertz (THz) and far infrared (FIR) regime. The peak conductance of THz/FIR active bilayer ribbons is around 2 orders of magnitude high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2009-11, Vol.103 (20), p.207401-207401, Article 207401
Hauptverfasser: Wright, A R, Cao, J C, Zhang, C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 207401
container_issue 20
container_start_page 207401
container_title Physical review letters
container_volume 103
creator Wright, A R
Cao, J C
Zhang, C
description We reveal that there exists a class of graphene structures (a subclass of bilayer graphene nanoribbons) which has an exceptionally strong optical response in the terahertz (THz) and far infrared (FIR) regime. The peak conductance of THz/FIR active bilayer ribbons is around 2 orders of magnitude higher than the universal conductance of sigma(0) = e(2)/4variant Planck's over 2pi observed in graphene sheets. The criterion for the THz/FIR active subclass is a bilayer graphene nanoribbon with a one-dimensional massless Dirac fermion energy dispersion near the Gamma point. Our results overcome a significant obstacle that hinders the potential application of graphene in electronics and photonics.
doi_str_mv 10.1103/physrevlett.103.207401
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733474403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733474403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-4cf1684a3c6a13e540fb6b472f40c382799beb30615704110dc99d6cd82852e13</originalsourceid><addsrcrecordid>eNo9kF9LwzAUxYMobk6_wsibT503TZa0jzLmHxgo4p5Lmt6ukS6tSTaYn96OTZ8OB865l_MjZMpgxhjwh745BI_7FmOcDX6WghLALsiYgcoTxZi4JGMAzpIcQI3ITQhfAMBSmV2TUQpcSoB8TNZL12hnsKJdH63RLTWdq3Ym2r2NB9rVtLStPqCnG6_7Bh1Sp13nbVl2LlDraGyQRvS6QR9_qMeN3eItuap1G_DurBOyflp-Ll6S1dvz6-JxlRihVEyEqZnMhOZGasZxLqAuZSlUWgswPEtVnpdYcpBsrkAMuyuT55U0VZZm8xQZn5D7093ed987DLHY2mCwbbXDbhcKxblQQgAfkvKUNL4LA7m66L3dan8oGBRHosX7QPQD96uBaHH0J6JDcXp-sSu3WP3X_hDyXwkXdaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733474403</pqid></control><display><type>article</type><title>Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime</title><source>American Physical Society Journals</source><creator>Wright, A R ; Cao, J C ; Zhang, C</creator><creatorcontrib>Wright, A R ; Cao, J C ; Zhang, C</creatorcontrib><description>We reveal that there exists a class of graphene structures (a subclass of bilayer graphene nanoribbons) which has an exceptionally strong optical response in the terahertz (THz) and far infrared (FIR) regime. The peak conductance of THz/FIR active bilayer ribbons is around 2 orders of magnitude higher than the universal conductance of sigma(0) = e(2)/4variant Planck's over 2pi observed in graphene sheets. The criterion for the THz/FIR active subclass is a bilayer graphene nanoribbon with a one-dimensional massless Dirac fermion energy dispersion near the Gamma point. Our results overcome a significant obstacle that hinders the potential application of graphene in electronics and photonics.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/physrevlett.103.207401</identifier><identifier>PMID: 20366009</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2009-11, Vol.103 (20), p.207401-207401, Article 207401</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-4cf1684a3c6a13e540fb6b472f40c382799beb30615704110dc99d6cd82852e13</citedby><cites>FETCH-LOGICAL-c477t-4cf1684a3c6a13e540fb6b472f40c382799beb30615704110dc99d6cd82852e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20366009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wright, A R</creatorcontrib><creatorcontrib>Cao, J C</creatorcontrib><creatorcontrib>Zhang, C</creatorcontrib><title>Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>We reveal that there exists a class of graphene structures (a subclass of bilayer graphene nanoribbons) which has an exceptionally strong optical response in the terahertz (THz) and far infrared (FIR) regime. The peak conductance of THz/FIR active bilayer ribbons is around 2 orders of magnitude higher than the universal conductance of sigma(0) = e(2)/4variant Planck's over 2pi observed in graphene sheets. The criterion for the THz/FIR active subclass is a bilayer graphene nanoribbon with a one-dimensional massless Dirac fermion energy dispersion near the Gamma point. Our results overcome a significant obstacle that hinders the potential application of graphene in electronics and photonics.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kF9LwzAUxYMobk6_wsibT503TZa0jzLmHxgo4p5Lmt6ukS6tSTaYn96OTZ8OB865l_MjZMpgxhjwh745BI_7FmOcDX6WghLALsiYgcoTxZi4JGMAzpIcQI3ITQhfAMBSmV2TUQpcSoB8TNZL12hnsKJdH63RLTWdq3Ym2r2NB9rVtLStPqCnG6_7Bh1Sp13nbVl2LlDraGyQRvS6QR9_qMeN3eItuap1G_DurBOyflp-Ll6S1dvz6-JxlRihVEyEqZnMhOZGasZxLqAuZSlUWgswPEtVnpdYcpBsrkAMuyuT55U0VZZm8xQZn5D7093ed987DLHY2mCwbbXDbhcKxblQQgAfkvKUNL4LA7m66L3dan8oGBRHosX7QPQD96uBaHH0J6JDcXp-sSu3WP3X_hDyXwkXdaw</recordid><startdate>20091113</startdate><enddate>20091113</enddate><creator>Wright, A R</creator><creator>Cao, J C</creator><creator>Zhang, C</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20091113</creationdate><title>Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime</title><author>Wright, A R ; Cao, J C ; Zhang, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-4cf1684a3c6a13e540fb6b472f40c382799beb30615704110dc99d6cd82852e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wright, A R</creatorcontrib><creatorcontrib>Cao, J C</creatorcontrib><creatorcontrib>Zhang, C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wright, A R</au><au>Cao, J C</au><au>Zhang, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2009-11-13</date><risdate>2009</risdate><volume>103</volume><issue>20</issue><spage>207401</spage><epage>207401</epage><pages>207401-207401</pages><artnum>207401</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We reveal that there exists a class of graphene structures (a subclass of bilayer graphene nanoribbons) which has an exceptionally strong optical response in the terahertz (THz) and far infrared (FIR) regime. The peak conductance of THz/FIR active bilayer ribbons is around 2 orders of magnitude higher than the universal conductance of sigma(0) = e(2)/4variant Planck's over 2pi observed in graphene sheets. The criterion for the THz/FIR active subclass is a bilayer graphene nanoribbon with a one-dimensional massless Dirac fermion energy dispersion near the Gamma point. Our results overcome a significant obstacle that hinders the potential application of graphene in electronics and photonics.</abstract><cop>United States</cop><pmid>20366009</pmid><doi>10.1103/physrevlett.103.207401</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2009-11, Vol.103 (20), p.207401-207401, Article 207401
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_733474403
source American Physical Society Journals
title Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A43%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20optical%20conductivity%20of%20bilayer%20graphene%20nanoribbons%20in%20the%20terahertz%20regime&rft.jtitle=Physical%20review%20letters&rft.au=Wright,%20A%20R&rft.date=2009-11-13&rft.volume=103&rft.issue=20&rft.spage=207401&rft.epage=207401&rft.pages=207401-207401&rft.artnum=207401&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/physrevlett.103.207401&rft_dat=%3Cproquest_cross%3E733474403%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733474403&rft_id=info:pmid/20366009&rfr_iscdi=true