Channel model for InSb-based superresolution optical disc system

A signal model of a superresolution optical channel would be an efficient tool for developing components of an associated high-density optical disc system. While the behavior of the laser diode, aperture, lens, and detector is properly described, a general mathematical model of the superresolution d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 2010-04, Vol.49 (10), p.1923-1931
Hauptverfasser: Hepper, Dietmar, Knappmann, Stephan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1931
container_issue 10
container_start_page 1923
container_title Applied Optics
container_volume 49
creator Hepper, Dietmar
Knappmann, Stephan
description A signal model of a superresolution optical channel would be an efficient tool for developing components of an associated high-density optical disc system. While the behavior of the laser diode, aperture, lens, and detector is properly described, a general mathematical model of the superresolution disc itself is not yet available. However, different approaches have been made to describe the properties of a mask layer, mainly based on temperature- or power-dependent nonlinear effects. The main problem of the modeling is that temperature-dependent material properties, such as thermal conductivity and refractive indices, are not known or not accurate enough to allow quantitative predictions. Therefore, it could be useful to define a signal-based or phenomenological model that can be calibrated with experimental data. In this contribution, we developed a complete optical channel model--from non-return-to-zero inverted (NRZI) input to disc readout signal--including the reflectivity of a superresolution disc with InSb used for the mask layer. Model parameters are derived from data measured using a static tester. The model is finally applied to a configuration appropriate for a dynamic superresolution optical drive by moving the focused spot relative to the material.
doi_str_mv 10.1364/AO.49.001923
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733473818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733473818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-ebc8089553ed2aecf4ff385fec0e414926a57ab22fc21e85ec79beef84284b023</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhi0EoqWwMaNsLKT4M7Y3qoqPSpU6ALPlOGcRlMTBTob--wa1sNzdKz16dXoQuiV4SVjBH1e7JddLjImm7AzNKREiZ6QQ52iOMWZ5oZmYoauUvqckuJaXaEanSyqp5uhp_WW7DpqsDdU0fYjZpnsv89ImqLI09hAjpNCMQx26LPRD7WyTVXVyWdqnAdprdOFtk-DmtBfo8-X5Y_2Wb3evm_Vqmzuq8ZBD6RRWWggGFbXgPPeeKeHBYeCEa1pYIW1JqXeUgBLgpC4BvOJU8RJTtkD3x94-hp8R0mDa6QloGttBGJORjHHJFFET-XAkXQwpRfCmj3Vr494QbH6VmdXOcG2Oyib87lQ8li1U__CfI3YACHJmwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733473818</pqid></control><display><type>article</type><title>Channel model for InSb-based superresolution optical disc system</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Hepper, Dietmar ; Knappmann, Stephan</creator><creatorcontrib>Hepper, Dietmar ; Knappmann, Stephan</creatorcontrib><description>A signal model of a superresolution optical channel would be an efficient tool for developing components of an associated high-density optical disc system. While the behavior of the laser diode, aperture, lens, and detector is properly described, a general mathematical model of the superresolution disc itself is not yet available. However, different approaches have been made to describe the properties of a mask layer, mainly based on temperature- or power-dependent nonlinear effects. The main problem of the modeling is that temperature-dependent material properties, such as thermal conductivity and refractive indices, are not known or not accurate enough to allow quantitative predictions. Therefore, it could be useful to define a signal-based or phenomenological model that can be calibrated with experimental data. In this contribution, we developed a complete optical channel model--from non-return-to-zero inverted (NRZI) input to disc readout signal--including the reflectivity of a superresolution disc with InSb used for the mask layer. Model parameters are derived from data measured using a static tester. The model is finally applied to a configuration appropriate for a dynamic superresolution optical drive by moving the focused spot relative to the material.</description><identifier>ISSN: 0003-6935</identifier><identifier>EISSN: 2155-3165</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.49.001923</identifier><identifier>PMID: 20357878</identifier><language>eng</language><publisher>United States</publisher><ispartof>Applied Optics, 2010-04, Vol.49 (10), p.1923-1931</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-ebc8089553ed2aecf4ff385fec0e414926a57ab22fc21e85ec79beef84284b023</citedby><cites>FETCH-LOGICAL-c290t-ebc8089553ed2aecf4ff385fec0e414926a57ab22fc21e85ec79beef84284b023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20357878$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hepper, Dietmar</creatorcontrib><creatorcontrib>Knappmann, Stephan</creatorcontrib><title>Channel model for InSb-based superresolution optical disc system</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>A signal model of a superresolution optical channel would be an efficient tool for developing components of an associated high-density optical disc system. While the behavior of the laser diode, aperture, lens, and detector is properly described, a general mathematical model of the superresolution disc itself is not yet available. However, different approaches have been made to describe the properties of a mask layer, mainly based on temperature- or power-dependent nonlinear effects. The main problem of the modeling is that temperature-dependent material properties, such as thermal conductivity and refractive indices, are not known or not accurate enough to allow quantitative predictions. Therefore, it could be useful to define a signal-based or phenomenological model that can be calibrated with experimental data. In this contribution, we developed a complete optical channel model--from non-return-to-zero inverted (NRZI) input to disc readout signal--including the reflectivity of a superresolution disc with InSb used for the mask layer. Model parameters are derived from data measured using a static tester. The model is finally applied to a configuration appropriate for a dynamic superresolution optical drive by moving the focused spot relative to the material.</description><issn>0003-6935</issn><issn>2155-3165</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQhi0EoqWwMaNsLKT4M7Y3qoqPSpU6ALPlOGcRlMTBTob--wa1sNzdKz16dXoQuiV4SVjBH1e7JddLjImm7AzNKREiZ6QQ52iOMWZ5oZmYoauUvqckuJaXaEanSyqp5uhp_WW7DpqsDdU0fYjZpnsv89ImqLI09hAjpNCMQx26LPRD7WyTVXVyWdqnAdprdOFtk-DmtBfo8-X5Y_2Wb3evm_Vqmzuq8ZBD6RRWWggGFbXgPPeeKeHBYeCEa1pYIW1JqXeUgBLgpC4BvOJU8RJTtkD3x94-hp8R0mDa6QloGttBGJORjHHJFFET-XAkXQwpRfCmj3Vr494QbH6VmdXOcG2Oyib87lQ8li1U__CfI3YACHJmwg</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Hepper, Dietmar</creator><creator>Knappmann, Stephan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100401</creationdate><title>Channel model for InSb-based superresolution optical disc system</title><author>Hepper, Dietmar ; Knappmann, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-ebc8089553ed2aecf4ff385fec0e414926a57ab22fc21e85ec79beef84284b023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hepper, Dietmar</creatorcontrib><creatorcontrib>Knappmann, Stephan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hepper, Dietmar</au><au>Knappmann, Stephan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Channel model for InSb-based superresolution optical disc system</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>2010-04-01</date><risdate>2010</risdate><volume>49</volume><issue>10</issue><spage>1923</spage><epage>1931</epage><pages>1923-1931</pages><issn>0003-6935</issn><eissn>2155-3165</eissn><eissn>1539-4522</eissn><abstract>A signal model of a superresolution optical channel would be an efficient tool for developing components of an associated high-density optical disc system. While the behavior of the laser diode, aperture, lens, and detector is properly described, a general mathematical model of the superresolution disc itself is not yet available. However, different approaches have been made to describe the properties of a mask layer, mainly based on temperature- or power-dependent nonlinear effects. The main problem of the modeling is that temperature-dependent material properties, such as thermal conductivity and refractive indices, are not known or not accurate enough to allow quantitative predictions. Therefore, it could be useful to define a signal-based or phenomenological model that can be calibrated with experimental data. In this contribution, we developed a complete optical channel model--from non-return-to-zero inverted (NRZI) input to disc readout signal--including the reflectivity of a superresolution disc with InSb used for the mask layer. Model parameters are derived from data measured using a static tester. The model is finally applied to a configuration appropriate for a dynamic superresolution optical drive by moving the focused spot relative to the material.</abstract><cop>United States</cop><pmid>20357878</pmid><doi>10.1364/AO.49.001923</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6935
ispartof Applied Optics, 2010-04, Vol.49 (10), p.1923-1931
issn 0003-6935
2155-3165
1539-4522
language eng
recordid cdi_proquest_miscellaneous_733473818
source Alma/SFX Local Collection; Optica Publishing Group Journals
title Channel model for InSb-based superresolution optical disc system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Channel%20model%20for%20InSb-based%20superresolution%20optical%20disc%20system&rft.jtitle=Applied%20Optics&rft.au=Hepper,%20Dietmar&rft.date=2010-04-01&rft.volume=49&rft.issue=10&rft.spage=1923&rft.epage=1931&rft.pages=1923-1931&rft.issn=0003-6935&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.49.001923&rft_dat=%3Cproquest_cross%3E733473818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733473818&rft_id=info:pmid/20357878&rfr_iscdi=true