Sampling the N-terminal proteome of human blood
The proteomes of blood plasma and serum represent a potential gold mine of biological and diagnostic information, but challenges such as dynamic range of protein concentration have hampered efforts to unlock this resource. Here we present a method to label and isolate N-terminal peptides from human...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2010-03, Vol.107 (10), p.4561-4566 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4566 |
---|---|
container_issue | 10 |
container_start_page | 4561 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 107 |
creator | Wildes, David Wells, James A. |
description | The proteomes of blood plasma and serum represent a potential gold mine of biological and diagnostic information, but challenges such as dynamic range of protein concentration have hampered efforts to unlock this resource. Here we present a method to label and isolate N-terminal peptides from human plasma and serum. This process dramatically reduces the complexity of the sample by eliminating internal peptides. We identify 772 unique N-terminal peptides in 222 proteins, ranging over six orders of magnitude in abundance. This approach is highly suited for studying natural proteolysis in plasma and serum. We find internal cleavages in plasma proteins created by endo- and exopeptidases, providing information about the activities of proteolytic enzymes in blood, which may be correlated with disease states. We also find signatures of signal peptide cleavage, coagulation and complement activation, and other known proteolytic processes, in addition to a large number of cleavages that have not been reported previously, including over 200 cleavages of blood proteins by aminopeptidases. Finally, we can identify substrates from specific proteases by exogenous addition of the protease combined with N-terminal isolation and quantitative mass spectrometry. In this way we identified proteins cleaved in human plasma by membrane-type serine protease 1, an enzyme linked to cancer progression. These studies demonstrate the utility of direct N-terminal labeling by subtiligase to identify and characterize endogenous and exogenous proteolysis in human plasma and serum. |
doi_str_mv | 10.1073/pnas.0914495107 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_733409765</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25664837</jstor_id><sourcerecordid>25664837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-7fa90bde8593da25466b1fe4ebba10e18081ce853de8329b20aca4f5870352ee3</originalsourceid><addsrcrecordid>eNpdkc1P3DAQxS1UBFvKmVNp1EtPYcfxV3xBqlZtQVrBgXK2nGTCZpXEwU4q9b-vo13Ywsmy5zfPM-8RckHhioJiy6G34Qo05VyL-HBEFjTeUsk1fCALgEylOc_4KfkYwhYAtMjhhJxmQBUDrRdk-WC7oW36p2TcYHKXjui7prdtMng3ouswcXWymTrbJ0XrXPWJHNe2DXi-P8_I488fv1c36fr-1-3q-zotuRRjqmqroagwF5pVNhNcyoLWyLEoLAWkOeS0jFUWEZbpIgNbWl6LXAETGSI7I9c73WEqOqxK7EdvWzP4prP-r3G2MW8rfbMxT-6PyeK-wGQU-LYX8O55wjCargkltq3t0U3BKMY4aCVFJL--I7du8tGDYKJPjPM4a4SWO6j0LgSP9esoFMwchZmjMIcoYsfl_xu88i_eR-DLHpg7D3JqluRCzp9-3hHbMDp_UBBS8pwp9g8nQpgs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201344081</pqid></control><display><type>article</type><title>Sampling the N-terminal proteome of human blood</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wildes, David ; Wells, James A.</creator><creatorcontrib>Wildes, David ; Wells, James A.</creatorcontrib><description>The proteomes of blood plasma and serum represent a potential gold mine of biological and diagnostic information, but challenges such as dynamic range of protein concentration have hampered efforts to unlock this resource. Here we present a method to label and isolate N-terminal peptides from human plasma and serum. This process dramatically reduces the complexity of the sample by eliminating internal peptides. We identify 772 unique N-terminal peptides in 222 proteins, ranging over six orders of magnitude in abundance. This approach is highly suited for studying natural proteolysis in plasma and serum. We find internal cleavages in plasma proteins created by endo- and exopeptidases, providing information about the activities of proteolytic enzymes in blood, which may be correlated with disease states. We also find signatures of signal peptide cleavage, coagulation and complement activation, and other known proteolytic processes, in addition to a large number of cleavages that have not been reported previously, including over 200 cleavages of blood proteins by aminopeptidases. Finally, we can identify substrates from specific proteases by exogenous addition of the protease combined with N-terminal isolation and quantitative mass spectrometry. In this way we identified proteins cleaved in human plasma by membrane-type serine protease 1, an enzyme linked to cancer progression. These studies demonstrate the utility of direct N-terminal labeling by subtiligase to identify and characterize endogenous and exogenous proteolysis in human plasma and serum.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0914495107</identifier><identifier>PMID: 20173099</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biochemistry ; Biological markers ; Biological Sciences ; Blood ; Blood plasma ; Blood proteins ; Blood Proteins - analysis ; Blood Proteins - chemistry ; Chromatography, Liquid ; Coagulation ; Enzymes ; Humans ; Mass Spectrometry ; Mass spectroscopy ; Peptide Fragments - analysis ; Peptide Fragments - isolation & purification ; Peptides ; Plasma ; Proteins ; Proteome - analysis ; Proteome - chemistry ; Proteomes ; Proteomics ; Proteomics - methods ; Reproducibility of Results ; Staining and Labeling - methods</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (10), p.4561-4566</ispartof><rights>Copyright National Academy of Sciences Mar 9, 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-7fa90bde8593da25466b1fe4ebba10e18081ce853de8329b20aca4f5870352ee3</citedby><cites>FETCH-LOGICAL-c465t-7fa90bde8593da25466b1fe4ebba10e18081ce853de8329b20aca4f5870352ee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/107/10.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25664837$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25664837$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20173099$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wildes, David</creatorcontrib><creatorcontrib>Wells, James A.</creatorcontrib><title>Sampling the N-terminal proteome of human blood</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The proteomes of blood plasma and serum represent a potential gold mine of biological and diagnostic information, but challenges such as dynamic range of protein concentration have hampered efforts to unlock this resource. Here we present a method to label and isolate N-terminal peptides from human plasma and serum. This process dramatically reduces the complexity of the sample by eliminating internal peptides. We identify 772 unique N-terminal peptides in 222 proteins, ranging over six orders of magnitude in abundance. This approach is highly suited for studying natural proteolysis in plasma and serum. We find internal cleavages in plasma proteins created by endo- and exopeptidases, providing information about the activities of proteolytic enzymes in blood, which may be correlated with disease states. We also find signatures of signal peptide cleavage, coagulation and complement activation, and other known proteolytic processes, in addition to a large number of cleavages that have not been reported previously, including over 200 cleavages of blood proteins by aminopeptidases. Finally, we can identify substrates from specific proteases by exogenous addition of the protease combined with N-terminal isolation and quantitative mass spectrometry. In this way we identified proteins cleaved in human plasma by membrane-type serine protease 1, an enzyme linked to cancer progression. These studies demonstrate the utility of direct N-terminal labeling by subtiligase to identify and characterize endogenous and exogenous proteolysis in human plasma and serum.</description><subject>Biochemistry</subject><subject>Biological markers</subject><subject>Biological Sciences</subject><subject>Blood</subject><subject>Blood plasma</subject><subject>Blood proteins</subject><subject>Blood Proteins - analysis</subject><subject>Blood Proteins - chemistry</subject><subject>Chromatography, Liquid</subject><subject>Coagulation</subject><subject>Enzymes</subject><subject>Humans</subject><subject>Mass Spectrometry</subject><subject>Mass spectroscopy</subject><subject>Peptide Fragments - analysis</subject><subject>Peptide Fragments - isolation & purification</subject><subject>Peptides</subject><subject>Plasma</subject><subject>Proteins</subject><subject>Proteome - analysis</subject><subject>Proteome - chemistry</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Proteomics - methods</subject><subject>Reproducibility of Results</subject><subject>Staining and Labeling - methods</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkc1P3DAQxS1UBFvKmVNp1EtPYcfxV3xBqlZtQVrBgXK2nGTCZpXEwU4q9b-vo13Ywsmy5zfPM-8RckHhioJiy6G34Qo05VyL-HBEFjTeUsk1fCALgEylOc_4KfkYwhYAtMjhhJxmQBUDrRdk-WC7oW36p2TcYHKXjui7prdtMng3ouswcXWymTrbJ0XrXPWJHNe2DXi-P8_I488fv1c36fr-1-3q-zotuRRjqmqroagwF5pVNhNcyoLWyLEoLAWkOeS0jFUWEZbpIgNbWl6LXAETGSI7I9c73WEqOqxK7EdvWzP4prP-r3G2MW8rfbMxT-6PyeK-wGQU-LYX8O55wjCargkltq3t0U3BKMY4aCVFJL--I7du8tGDYKJPjPM4a4SWO6j0LgSP9esoFMwchZmjMIcoYsfl_xu88i_eR-DLHpg7D3JqluRCzp9-3hHbMDp_UBBS8pwp9g8nQpgs</recordid><startdate>20100309</startdate><enddate>20100309</enddate><creator>Wildes, David</creator><creator>Wells, James A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100309</creationdate><title>Sampling the N-terminal proteome of human blood</title><author>Wildes, David ; Wells, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-7fa90bde8593da25466b1fe4ebba10e18081ce853de8329b20aca4f5870352ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biochemistry</topic><topic>Biological markers</topic><topic>Biological Sciences</topic><topic>Blood</topic><topic>Blood plasma</topic><topic>Blood proteins</topic><topic>Blood Proteins - analysis</topic><topic>Blood Proteins - chemistry</topic><topic>Chromatography, Liquid</topic><topic>Coagulation</topic><topic>Enzymes</topic><topic>Humans</topic><topic>Mass Spectrometry</topic><topic>Mass spectroscopy</topic><topic>Peptide Fragments - analysis</topic><topic>Peptide Fragments - isolation & purification</topic><topic>Peptides</topic><topic>Plasma</topic><topic>Proteins</topic><topic>Proteome - analysis</topic><topic>Proteome - chemistry</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Proteomics - methods</topic><topic>Reproducibility of Results</topic><topic>Staining and Labeling - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wildes, David</creatorcontrib><creatorcontrib>Wells, James A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wildes, David</au><au>Wells, James A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sampling the N-terminal proteome of human blood</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2010-03-09</date><risdate>2010</risdate><volume>107</volume><issue>10</issue><spage>4561</spage><epage>4566</epage><pages>4561-4566</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The proteomes of blood plasma and serum represent a potential gold mine of biological and diagnostic information, but challenges such as dynamic range of protein concentration have hampered efforts to unlock this resource. Here we present a method to label and isolate N-terminal peptides from human plasma and serum. This process dramatically reduces the complexity of the sample by eliminating internal peptides. We identify 772 unique N-terminal peptides in 222 proteins, ranging over six orders of magnitude in abundance. This approach is highly suited for studying natural proteolysis in plasma and serum. We find internal cleavages in plasma proteins created by endo- and exopeptidases, providing information about the activities of proteolytic enzymes in blood, which may be correlated with disease states. We also find signatures of signal peptide cleavage, coagulation and complement activation, and other known proteolytic processes, in addition to a large number of cleavages that have not been reported previously, including over 200 cleavages of blood proteins by aminopeptidases. Finally, we can identify substrates from specific proteases by exogenous addition of the protease combined with N-terminal isolation and quantitative mass spectrometry. In this way we identified proteins cleaved in human plasma by membrane-type serine protease 1, an enzyme linked to cancer progression. These studies demonstrate the utility of direct N-terminal labeling by subtiligase to identify and characterize endogenous and exogenous proteolysis in human plasma and serum.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>20173099</pmid><doi>10.1073/pnas.0914495107</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2010-03, Vol.107 (10), p.4561-4566 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_733409765 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Biochemistry Biological markers Biological Sciences Blood Blood plasma Blood proteins Blood Proteins - analysis Blood Proteins - chemistry Chromatography, Liquid Coagulation Enzymes Humans Mass Spectrometry Mass spectroscopy Peptide Fragments - analysis Peptide Fragments - isolation & purification Peptides Plasma Proteins Proteome - analysis Proteome - chemistry Proteomes Proteomics Proteomics - methods Reproducibility of Results Staining and Labeling - methods |
title | Sampling the N-terminal proteome of human blood |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sampling%20the%20N-terminal%20proteome%20of%20human%20blood&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Wildes,%20David&rft.date=2010-03-09&rft.volume=107&rft.issue=10&rft.spage=4561&rft.epage=4566&rft.pages=4561-4566&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0914495107&rft_dat=%3Cjstor_proqu%3E25664837%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201344081&rft_id=info:pmid/20173099&rft_jstor_id=25664837&rfr_iscdi=true |