Alterations in the modulation of cerebrovascular tone and blood flow by nitric oxide synthases in SHRsp with stroke
Aims The modulation of myogenic function and cerebral blood flow (CBF) by nitric oxide (NO) synthases (NOS) was assessed in the middle cerebral arteries (MCAs) of Kyoto Wistar stroke prone hypertensive rats (SHRsp) in relation to haemorrhagic stroke development. Methods and results MCAs were studied...
Gespeichert in:
Veröffentlicht in: | Cardiovascular research 2010-04, Vol.86 (1), p.160-168 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aims The modulation of myogenic function and cerebral blood flow (CBF) by nitric oxide (NO) synthases (NOS) was assessed in the middle cerebral arteries (MCAs) of Kyoto Wistar stroke prone hypertensive rats (SHRsp) in relation to haemorrhagic stroke development. Methods and results MCAs were studied with a pressure myograph. CBF in MCA perfusion domain was measured using laser Doppler techniques. NOS isozymes were identified using immunohistochemistry. MCAs expressed endothelial, neuronal, and inducible NOS (eNOS, nNOS, and iNOS, respectively) in the endothelium, nNOS and traces of iNOS in smooth muscle and adventitial cells. Before stroke, MCA pressure-dependent constriction (PDC) was superimposed over basal non-pressure-dependent tone (BNPDT). Endothelial NO generation and non-endothelial nNOS but not iNOS reduced BNPDT and increased the lumen diameter at which PDC initiated without altering the amplitude of PDC. NOS inhibition decreased CBF and increased the upper blood pressure limit of autoregulation. PDC, CBF autoregulation, and NOS dilatory influence were lost, and BNPDT was increased in MCAs from SHRsp with stroke. The expression of NOS isozymes and MCA reactivity to NO donors was not altered. NOS activity was not recovered by in vitro l-arginine or tetrahydrobiopterin supplementation, l-arginase inhibition or superoxide scavengers. Conclusion The loss of PDC and CBF autoregulation during hypertension may facilitate over-perfusion and cerebral haemorrhage formation in SHRsp. NOS dysfunction in MCAs preceded stroke and involved the inactivation of eNOS and nNOS in areas not subjected to hyper-distension. The elevation in BNPDT due to NOS inactivation may oppose over-perfusion in the absence of CBF autoregulation. |
---|---|
ISSN: | 0008-6363 1755-3245 |
DOI: | 10.1093/cvr/cvp395 |