Cooperative Effect of Electrospinning and Nanoclay on Formation of Polar Crystalline Phases in Poly(vinylidene fluoride)

Poly(vinylidene difluoride)/organically modified montmorillonite (PVDF/OMMT) composite nanofibers were prepared by electrospinning the solution of PVDF/OMMT precursor in DMF. Wide-angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM) show that in the bulk of the PVDF/OMMT precurs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2010-06, Vol.2 (6), p.1759-1768
Hauptverfasser: Liu, Yi-Liao, Li, Ying, Xu, Jun-Ting, Fan, Zhi-Qiang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Poly(vinylidene difluoride)/organically modified montmorillonite (PVDF/OMMT) composite nanofibers were prepared by electrospinning the solution of PVDF/OMMT precursor in DMF. Wide-angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM) show that in the bulk of the PVDF/OMMT precursor OMMT platelets are homogeneously dispersed in PVDF and can be both intercalated and exfoliated. It is found that the diameter of the PVDF/OMMT composite nanofibers is smaller than that of the neat PVDF fibers because the lower viscosity of PVDF/OMMT solution, which is attributed to the possible adsorption of PVDF chains on OMMT layers and thus reduction in number of entanglement. The crystal structure of the composite nanofibers was investigated using WAXD and Fourier transform infrared (FT-IR) and compared with that of thin film samples. The results show that the nonpolar α phase is completely absent in the electrospun PVDF/OMMT composite nanofibers, whereas it is still present in the neat PVDF electrospun fibers and in the thin films of PVDF/OMMT nanocomposites. The cooperative effect between electrospinning and nanoclay on formation of polar β and γ crystalline phases in PVDF is discussed. The IR result reveals that electrospinning induces formation of long trans conformation, whereas OMMT platelets can retard relaxation of PVDF chains and stabilize such conformation due to the possible interaction between the PVDF chains and OMMT layers. This cooperative effect leads to extinction of nonpolar α phase and enhances the polar β and γ phases in the electrospun PVDF/OMMT composite nanofibers.
ISSN:1944-8244
1944-8252
DOI:10.1021/am1002525