AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE‐dependent ABA signaling involved in drought stress tolerance and require ABA for full activation
Summary A myriad of drought stress‐inducible genes have been reported, and many of these are activated by abscisic acid (ABA). In the promoter regions of such ABA‐regulated genes, conserved cis‐elements, designated ABA‐responsive elements (ABREs), control gene expression via bZIP‐type AREB/ABF trans...
Gespeichert in:
Veröffentlicht in: | The Plant journal : for cell and molecular biology 2010-02, Vol.61 (4), p.672-685 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 685 |
---|---|
container_issue | 4 |
container_start_page | 672 |
container_title | The Plant journal : for cell and molecular biology |
container_volume | 61 |
creator | Yoshida, Takuya Fujita, Yasunari Sayama, Hiroko Kidokoro, Satoshi Maruyama, Kyonoshin Mizoi, Junya Shinozaki, Kazuo Yamaguchi‐Shinozaki, Kazuko |
description | Summary
A myriad of drought stress‐inducible genes have been reported, and many of these are activated by abscisic acid (ABA). In the promoter regions of such ABA‐regulated genes, conserved cis‐elements, designated ABA‐responsive elements (ABREs), control gene expression via bZIP‐type AREB/ABF transcription factors. Although all three members of the AREB/ABF subfamily, AREB1, AREB2, and ABF3, are upregulated by ABA and water stress, it remains unclear whether these are functional homologs. Here, we report that all three AREB/ABF transcription factors require ABA for full activation, can form hetero‐ or homodimers to function in nuclei, and can interact with SRK2D/SnRK2.2, an SnRK2 protein kinase that was identified as a regulator of AREB1. Along with the tissue‐specific expression patterns of these genes and the subcellular localization of their encoded proteins, these findings clearly indicate that AREB1, AREB2, and ABF3 have largely overlapping functions. To elucidate the role of these AREB/ABF transcription factors, we generated an areb1 areb2 abf3 triple mutant. Large‐scale transcriptome analysis, which showed that stress‐responsive gene expression is remarkably impaired in the triple mutant, revealed novel AREB/ABF downstream genes in response to water stress, including many LEA class and group‐Ab PP2C genes and transcription factors. The areb1 areb2 abf3 triple mutant is more resistant to ABA than are the other single and double mutants with respect to primary root growth, and it displays reduced drought tolerance. Thus, these results indicate that AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE‐dependent gene expression for ABA signaling under conditions of water stress. |
doi_str_mv | 10.1111/j.1365-313X.2009.04092.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733391012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733391012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5612-b7debd006aa10c932c6535818aea1df2ca95e968d33b735981baca09db9fad803</originalsourceid><addsrcrecordid>eNqNks1uEzEQx1cIREPgFZCFBFy6wR_75QOHtEr5UCVQVSRulteeTR0569T2hubGI_A-vA1PgjeJisQB4cuM7N_8PZr5ZxkieEbSebOaEVaVOSPs64xizGe4wJzO7h5kk_uHh9kE8wrndUHoSfYkhBXGpGZV8Tg7IZwXNW_IJPs5v1qckVM0BnqKZK_R_OyCIekBrWWI4FH0sg_Km000rkedVNH5gOKNjEg5twEvo9mC3SEPy8HKCEnhavHr-w8NG-g19DFdzFEwy15a0y-R6bfObkGnBGnvhuVNRCF6CEnV2aTXK9h34uF2MB725Z3zqBusRel_s5VjL0-zR520AZ4d4zT7crG4Pn-fX3569-F8fpmrsiI0b2sNrca4kpJgxRlVVcnKhjQSJNEdVZKXwKtGM9bWrExjaaWSmOuWd1I3mE2z1wfdjXe3A4Qo1iYosFb24IYgasYYJ5jQRL76J0kJ5XVB6wS--AtcucGn-YwMK3iT-khQc4CUdyF46MTGm7X0O0GwGH0gVmJctxjXLUYfiL0PxF0qfX7UH9o16D-Fx8Un4OURkEFJ241DN-Geo5TxZrTLNHt74L4ZC7v_bkBcf_44Zuw33xbQqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213498359</pqid></control><display><type>article</type><title>AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE‐dependent ABA signaling involved in drought stress tolerance and require ABA for full activation</title><source>Wiley Free Content</source><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yoshida, Takuya ; Fujita, Yasunari ; Sayama, Hiroko ; Kidokoro, Satoshi ; Maruyama, Kyonoshin ; Mizoi, Junya ; Shinozaki, Kazuo ; Yamaguchi‐Shinozaki, Kazuko</creator><creatorcontrib>Yoshida, Takuya ; Fujita, Yasunari ; Sayama, Hiroko ; Kidokoro, Satoshi ; Maruyama, Kyonoshin ; Mizoi, Junya ; Shinozaki, Kazuo ; Yamaguchi‐Shinozaki, Kazuko</creatorcontrib><description>Summary
A myriad of drought stress‐inducible genes have been reported, and many of these are activated by abscisic acid (ABA). In the promoter regions of such ABA‐regulated genes, conserved cis‐elements, designated ABA‐responsive elements (ABREs), control gene expression via bZIP‐type AREB/ABF transcription factors. Although all three members of the AREB/ABF subfamily, AREB1, AREB2, and ABF3, are upregulated by ABA and water stress, it remains unclear whether these are functional homologs. Here, we report that all three AREB/ABF transcription factors require ABA for full activation, can form hetero‐ or homodimers to function in nuclei, and can interact with SRK2D/SnRK2.2, an SnRK2 protein kinase that was identified as a regulator of AREB1. Along with the tissue‐specific expression patterns of these genes and the subcellular localization of their encoded proteins, these findings clearly indicate that AREB1, AREB2, and ABF3 have largely overlapping functions. To elucidate the role of these AREB/ABF transcription factors, we generated an areb1 areb2 abf3 triple mutant. Large‐scale transcriptome analysis, which showed that stress‐responsive gene expression is remarkably impaired in the triple mutant, revealed novel AREB/ABF downstream genes in response to water stress, including many LEA class and group‐Ab PP2C genes and transcription factors. The areb1 areb2 abf3 triple mutant is more resistant to ABA than are the other single and double mutants with respect to primary root growth, and it displays reduced drought tolerance. Thus, these results indicate that AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE‐dependent gene expression for ABA signaling under conditions of water stress.</description><identifier>ISSN: 0960-7412</identifier><identifier>EISSN: 1365-313X</identifier><identifier>DOI: 10.1111/j.1365-313X.2009.04092.x</identifier><identifier>PMID: 19947981</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>abscisic acid ; Abscisic Acid - metabolism ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; AREB/ABF ; Basic-Leucine Zipper Transcription Factors - genetics ; Basic-Leucine Zipper Transcription Factors - metabolism ; Biological and medical sciences ; bZIP protein ; Drought ; drought stress ; Droughts ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Kinases ; Molecular and cellular biology ; Molecular genetics ; Mutation ; Oligonucleotide Array Sequence Analysis ; Oryza - genetics ; Oryza - metabolism ; phosphorylation ; Plant biology ; Plant physiology and development ; Plants, Genetically Modified - genetics ; Plants, Genetically Modified - metabolism ; Protein Multimerization ; Protein-Serine-Threonine Kinases - metabolism ; Proteins ; RNA, Plant - genetics ; Stress response ; Transcription. Transcription factor. Splicing. Rna processing ; transcriptional regulation</subject><ispartof>The Plant journal : for cell and molecular biology, 2010-02, Vol.61 (4), p.672-685</ispartof><rights>2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Journal compilation © 2010 Blackwell Publishing Ltd and the Society for Experimental Biology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5612-b7debd006aa10c932c6535818aea1df2ca95e968d33b735981baca09db9fad803</citedby><cites>FETCH-LOGICAL-c5612-b7debd006aa10c932c6535818aea1df2ca95e968d33b735981baca09db9fad803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1365-313X.2009.04092.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1365-313X.2009.04092.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22398017$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19947981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshida, Takuya</creatorcontrib><creatorcontrib>Fujita, Yasunari</creatorcontrib><creatorcontrib>Sayama, Hiroko</creatorcontrib><creatorcontrib>Kidokoro, Satoshi</creatorcontrib><creatorcontrib>Maruyama, Kyonoshin</creatorcontrib><creatorcontrib>Mizoi, Junya</creatorcontrib><creatorcontrib>Shinozaki, Kazuo</creatorcontrib><creatorcontrib>Yamaguchi‐Shinozaki, Kazuko</creatorcontrib><title>AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE‐dependent ABA signaling involved in drought stress tolerance and require ABA for full activation</title><title>The Plant journal : for cell and molecular biology</title><addtitle>Plant J</addtitle><description>Summary
A myriad of drought stress‐inducible genes have been reported, and many of these are activated by abscisic acid (ABA). In the promoter regions of such ABA‐regulated genes, conserved cis‐elements, designated ABA‐responsive elements (ABREs), control gene expression via bZIP‐type AREB/ABF transcription factors. Although all three members of the AREB/ABF subfamily, AREB1, AREB2, and ABF3, are upregulated by ABA and water stress, it remains unclear whether these are functional homologs. Here, we report that all three AREB/ABF transcription factors require ABA for full activation, can form hetero‐ or homodimers to function in nuclei, and can interact with SRK2D/SnRK2.2, an SnRK2 protein kinase that was identified as a regulator of AREB1. Along with the tissue‐specific expression patterns of these genes and the subcellular localization of their encoded proteins, these findings clearly indicate that AREB1, AREB2, and ABF3 have largely overlapping functions. To elucidate the role of these AREB/ABF transcription factors, we generated an areb1 areb2 abf3 triple mutant. Large‐scale transcriptome analysis, which showed that stress‐responsive gene expression is remarkably impaired in the triple mutant, revealed novel AREB/ABF downstream genes in response to water stress, including many LEA class and group‐Ab PP2C genes and transcription factors. The areb1 areb2 abf3 triple mutant is more resistant to ABA than are the other single and double mutants with respect to primary root growth, and it displays reduced drought tolerance. Thus, these results indicate that AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE‐dependent gene expression for ABA signaling under conditions of water stress.</description><subject>abscisic acid</subject><subject>Abscisic Acid - metabolism</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>AREB/ABF</subject><subject>Basic-Leucine Zipper Transcription Factors - genetics</subject><subject>Basic-Leucine Zipper Transcription Factors - metabolism</subject><subject>Biological and medical sciences</subject><subject>bZIP protein</subject><subject>Drought</subject><subject>drought stress</subject><subject>Droughts</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Kinases</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Mutation</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Oryza - genetics</subject><subject>Oryza - metabolism</subject><subject>phosphorylation</subject><subject>Plant biology</subject><subject>Plant physiology and development</subject><subject>Plants, Genetically Modified - genetics</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Protein Multimerization</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Proteins</subject><subject>RNA, Plant - genetics</subject><subject>Stress response</subject><subject>Transcription. Transcription factor. Splicing. Rna processing</subject><subject>transcriptional regulation</subject><issn>0960-7412</issn><issn>1365-313X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1uEzEQx1cIREPgFZCFBFy6wR_75QOHtEr5UCVQVSRulteeTR0569T2hubGI_A-vA1PgjeJisQB4cuM7N_8PZr5ZxkieEbSebOaEVaVOSPs64xizGe4wJzO7h5kk_uHh9kE8wrndUHoSfYkhBXGpGZV8Tg7IZwXNW_IJPs5v1qckVM0BnqKZK_R_OyCIekBrWWI4FH0sg_Km000rkedVNH5gOKNjEg5twEvo9mC3SEPy8HKCEnhavHr-w8NG-g19DFdzFEwy15a0y-R6bfObkGnBGnvhuVNRCF6CEnV2aTXK9h34uF2MB725Z3zqBusRel_s5VjL0-zR520AZ4d4zT7crG4Pn-fX3569-F8fpmrsiI0b2sNrca4kpJgxRlVVcnKhjQSJNEdVZKXwKtGM9bWrExjaaWSmOuWd1I3mE2z1wfdjXe3A4Qo1iYosFb24IYgasYYJ5jQRL76J0kJ5XVB6wS--AtcucGn-YwMK3iT-khQc4CUdyF46MTGm7X0O0GwGH0gVmJctxjXLUYfiL0PxF0qfX7UH9o16D-Fx8Un4OURkEFJ241DN-Geo5TxZrTLNHt74L4ZC7v_bkBcf_44Zuw33xbQqQ</recordid><startdate>201002</startdate><enddate>201002</enddate><creator>Yoshida, Takuya</creator><creator>Fujita, Yasunari</creator><creator>Sayama, Hiroko</creator><creator>Kidokoro, Satoshi</creator><creator>Maruyama, Kyonoshin</creator><creator>Mizoi, Junya</creator><creator>Shinozaki, Kazuo</creator><creator>Yamaguchi‐Shinozaki, Kazuko</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201002</creationdate><title>AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE‐dependent ABA signaling involved in drought stress tolerance and require ABA for full activation</title><author>Yoshida, Takuya ; Fujita, Yasunari ; Sayama, Hiroko ; Kidokoro, Satoshi ; Maruyama, Kyonoshin ; Mizoi, Junya ; Shinozaki, Kazuo ; Yamaguchi‐Shinozaki, Kazuko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5612-b7debd006aa10c932c6535818aea1df2ca95e968d33b735981baca09db9fad803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>abscisic acid</topic><topic>Abscisic Acid - metabolism</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>AREB/ABF</topic><topic>Basic-Leucine Zipper Transcription Factors - genetics</topic><topic>Basic-Leucine Zipper Transcription Factors - metabolism</topic><topic>Biological and medical sciences</topic><topic>bZIP protein</topic><topic>Drought</topic><topic>drought stress</topic><topic>Droughts</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Kinases</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Mutation</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Oryza - genetics</topic><topic>Oryza - metabolism</topic><topic>phosphorylation</topic><topic>Plant biology</topic><topic>Plant physiology and development</topic><topic>Plants, Genetically Modified - genetics</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Protein Multimerization</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Proteins</topic><topic>RNA, Plant - genetics</topic><topic>Stress response</topic><topic>Transcription. Transcription factor. Splicing. Rna processing</topic><topic>transcriptional regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, Takuya</creatorcontrib><creatorcontrib>Fujita, Yasunari</creatorcontrib><creatorcontrib>Sayama, Hiroko</creatorcontrib><creatorcontrib>Kidokoro, Satoshi</creatorcontrib><creatorcontrib>Maruyama, Kyonoshin</creatorcontrib><creatorcontrib>Mizoi, Junya</creatorcontrib><creatorcontrib>Shinozaki, Kazuo</creatorcontrib><creatorcontrib>Yamaguchi‐Shinozaki, Kazuko</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>The Plant journal : for cell and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshida, Takuya</au><au>Fujita, Yasunari</au><au>Sayama, Hiroko</au><au>Kidokoro, Satoshi</au><au>Maruyama, Kyonoshin</au><au>Mizoi, Junya</au><au>Shinozaki, Kazuo</au><au>Yamaguchi‐Shinozaki, Kazuko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE‐dependent ABA signaling involved in drought stress tolerance and require ABA for full activation</atitle><jtitle>The Plant journal : for cell and molecular biology</jtitle><addtitle>Plant J</addtitle><date>2010-02</date><risdate>2010</risdate><volume>61</volume><issue>4</issue><spage>672</spage><epage>685</epage><pages>672-685</pages><issn>0960-7412</issn><eissn>1365-313X</eissn><abstract>Summary
A myriad of drought stress‐inducible genes have been reported, and many of these are activated by abscisic acid (ABA). In the promoter regions of such ABA‐regulated genes, conserved cis‐elements, designated ABA‐responsive elements (ABREs), control gene expression via bZIP‐type AREB/ABF transcription factors. Although all three members of the AREB/ABF subfamily, AREB1, AREB2, and ABF3, are upregulated by ABA and water stress, it remains unclear whether these are functional homologs. Here, we report that all three AREB/ABF transcription factors require ABA for full activation, can form hetero‐ or homodimers to function in nuclei, and can interact with SRK2D/SnRK2.2, an SnRK2 protein kinase that was identified as a regulator of AREB1. Along with the tissue‐specific expression patterns of these genes and the subcellular localization of their encoded proteins, these findings clearly indicate that AREB1, AREB2, and ABF3 have largely overlapping functions. To elucidate the role of these AREB/ABF transcription factors, we generated an areb1 areb2 abf3 triple mutant. Large‐scale transcriptome analysis, which showed that stress‐responsive gene expression is remarkably impaired in the triple mutant, revealed novel AREB/ABF downstream genes in response to water stress, including many LEA class and group‐Ab PP2C genes and transcription factors. The areb1 areb2 abf3 triple mutant is more resistant to ABA than are the other single and double mutants with respect to primary root growth, and it displays reduced drought tolerance. Thus, these results indicate that AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE‐dependent gene expression for ABA signaling under conditions of water stress.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>19947981</pmid><doi>10.1111/j.1365-313X.2009.04092.x</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-7412 |
ispartof | The Plant journal : for cell and molecular biology, 2010-02, Vol.61 (4), p.672-685 |
issn | 0960-7412 1365-313X |
language | eng |
recordid | cdi_proquest_miscellaneous_733391012 |
source | Wiley Free Content; MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | abscisic acid Abscisic Acid - metabolism Arabidopsis - genetics Arabidopsis - metabolism Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism AREB/ABF Basic-Leucine Zipper Transcription Factors - genetics Basic-Leucine Zipper Transcription Factors - metabolism Biological and medical sciences bZIP protein Drought drought stress Droughts Fundamental and applied biological sciences. Psychology Gene expression Kinases Molecular and cellular biology Molecular genetics Mutation Oligonucleotide Array Sequence Analysis Oryza - genetics Oryza - metabolism phosphorylation Plant biology Plant physiology and development Plants, Genetically Modified - genetics Plants, Genetically Modified - metabolism Protein Multimerization Protein-Serine-Threonine Kinases - metabolism Proteins RNA, Plant - genetics Stress response Transcription. Transcription factor. Splicing. Rna processing transcriptional regulation |
title | AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE‐dependent ABA signaling involved in drought stress tolerance and require ABA for full activation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AREB1,%20AREB2,%20and%20ABF3%20are%20master%20transcription%20factors%20that%20cooperatively%20regulate%20ABRE%E2%80%90dependent%20ABA%20signaling%20involved%20in%20drought%20stress%20tolerance%20and%20require%20ABA%20for%20full%20activation&rft.jtitle=The%20Plant%20journal%20:%20for%20cell%20and%20molecular%20biology&rft.au=Yoshida,%20Takuya&rft.date=2010-02&rft.volume=61&rft.issue=4&rft.spage=672&rft.epage=685&rft.pages=672-685&rft.issn=0960-7412&rft.eissn=1365-313X&rft_id=info:doi/10.1111/j.1365-313X.2009.04092.x&rft_dat=%3Cproquest_cross%3E733391012%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213498359&rft_id=info:pmid/19947981&rfr_iscdi=true |