Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin
Understanding the atomic structure of complex metastable (including glassy) materials is of great importance in research and industry, however, such materials resist solution by most standard techniques. Here, a novel technique combining thermodynamics and local structure is presented to solve the s...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2010-01, Vol.12 (13), p.3239-3245 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3245 |
---|---|
container_issue | 13 |
container_start_page | 3239 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 12 |
creator | White, Claire E Provis, John L Proffen, Thomas Riley, Daniel P van Deventer, Jannie S J |
description | Understanding the atomic structure of complex metastable (including glassy) materials is of great importance in research and industry, however, such materials resist solution by most standard techniques. Here, a novel technique combining thermodynamics and local structure is presented to solve the structure of the metastable aluminosilicate material metakaolin (calcined kaolinite) without the use of chemical constraints. The structure is elucidated by iterating between least-squares real-space refinement using neutron pair distribution function data, and geometry optimisation using density functional modelling. The resulting structural representation is both energetically feasible and in excellent agreement with experimental data. This accurate structural representation of metakaolin provides new insight into the local environment of the aluminium atoms, with evidence of the existence of tri-coordinated aluminium. By the availability of this detailed chemically feasible atomic description, without the need to artificially impose constraints during the refinement process, there exists the opportunity to tailor chemical and mechanical processes involving metakaolin and other complex metastable materials at the atomic level to obtain optimal performance at the macro-scale. |
doi_str_mv | 10.1039/b922993k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733390041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733390041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-6005b2c66c25a1112122144b8e0c952001746350dff82a4b4274b84f3fc4ae8b3</originalsourceid><addsrcrecordid>eNo90clOwzAQBmALgWgpSDwB8o1yCHjLxg21FJAqwaGcI9txwDSxi-0g5WV4VhK6nGak-fRLMwPAJUa3GNH8TuSE5DldH4ExZgmNcpSx40OfJiNw5v0XQgjHmJ6CEUGEpilmY_A7s43QRpsPWCrjdehg1RoZtDW8huFTWdfB6XyxuoHclHDDtYOl9sFp0Q7ooOH0bb4YEK87rz0MFnpb_6ghA_a-laF1CtoKNipwH7ioFWx4UE7z2t__M8n9Qay5rbU5BydVP1YXuzoB74vH1ew5Wr4-vcwelpGkBIcoQSgWRCaJJDHHGBNMCGZMZArJPCb93ml_ihiVVZURzgQjaT9kFa0k4yoTdAKut7kbZ79b5UPRaC9VXXOjbOuLlFKaI8RwL6dbKZ313qmq2DjdcNcVGBXDM4r9M3p6tQttRaPKA9xfn_4B2JGFng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733390041</pqid></control><display><type>article</type><title>Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>White, Claire E ; Provis, John L ; Proffen, Thomas ; Riley, Daniel P ; van Deventer, Jannie S J</creator><creatorcontrib>White, Claire E ; Provis, John L ; Proffen, Thomas ; Riley, Daniel P ; van Deventer, Jannie S J</creatorcontrib><description>Understanding the atomic structure of complex metastable (including glassy) materials is of great importance in research and industry, however, such materials resist solution by most standard techniques. Here, a novel technique combining thermodynamics and local structure is presented to solve the structure of the metastable aluminosilicate material metakaolin (calcined kaolinite) without the use of chemical constraints. The structure is elucidated by iterating between least-squares real-space refinement using neutron pair distribution function data, and geometry optimisation using density functional modelling. The resulting structural representation is both energetically feasible and in excellent agreement with experimental data. This accurate structural representation of metakaolin provides new insight into the local environment of the aluminium atoms, with evidence of the existence of tri-coordinated aluminium. By the availability of this detailed chemically feasible atomic description, without the need to artificially impose constraints during the refinement process, there exists the opportunity to tailor chemical and mechanical processes involving metakaolin and other complex metastable materials at the atomic level to obtain optimal performance at the macro-scale.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/b922993k</identifier><identifier>PMID: 20237714</identifier><language>eng</language><publisher>England</publisher><ispartof>Physical chemistry chemical physics : PCCP, 2010-01, Vol.12 (13), p.3239-3245</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-6005b2c66c25a1112122144b8e0c952001746350dff82a4b4274b84f3fc4ae8b3</citedby><cites>FETCH-LOGICAL-c321t-6005b2c66c25a1112122144b8e0c952001746350dff82a4b4274b84f3fc4ae8b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20237714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>White, Claire E</creatorcontrib><creatorcontrib>Provis, John L</creatorcontrib><creatorcontrib>Proffen, Thomas</creatorcontrib><creatorcontrib>Riley, Daniel P</creatorcontrib><creatorcontrib>van Deventer, Jannie S J</creatorcontrib><title>Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Understanding the atomic structure of complex metastable (including glassy) materials is of great importance in research and industry, however, such materials resist solution by most standard techniques. Here, a novel technique combining thermodynamics and local structure is presented to solve the structure of the metastable aluminosilicate material metakaolin (calcined kaolinite) without the use of chemical constraints. The structure is elucidated by iterating between least-squares real-space refinement using neutron pair distribution function data, and geometry optimisation using density functional modelling. The resulting structural representation is both energetically feasible and in excellent agreement with experimental data. This accurate structural representation of metakaolin provides new insight into the local environment of the aluminium atoms, with evidence of the existence of tri-coordinated aluminium. By the availability of this detailed chemically feasible atomic description, without the need to artificially impose constraints during the refinement process, there exists the opportunity to tailor chemical and mechanical processes involving metakaolin and other complex metastable materials at the atomic level to obtain optimal performance at the macro-scale.</description><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNo90clOwzAQBmALgWgpSDwB8o1yCHjLxg21FJAqwaGcI9txwDSxi-0g5WV4VhK6nGak-fRLMwPAJUa3GNH8TuSE5DldH4ExZgmNcpSx40OfJiNw5v0XQgjHmJ6CEUGEpilmY_A7s43QRpsPWCrjdehg1RoZtDW8huFTWdfB6XyxuoHclHDDtYOl9sFp0Q7ooOH0bb4YEK87rz0MFnpb_6ghA_a-laF1CtoKNipwH7ioFWx4UE7z2t__M8n9Qay5rbU5BydVP1YXuzoB74vH1ew5Wr4-vcwelpGkBIcoQSgWRCaJJDHHGBNMCGZMZArJPCb93ml_ihiVVZURzgQjaT9kFa0k4yoTdAKut7kbZ79b5UPRaC9VXXOjbOuLlFKaI8RwL6dbKZ313qmq2DjdcNcVGBXDM4r9M3p6tQttRaPKA9xfn_4B2JGFng</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>White, Claire E</creator><creator>Provis, John L</creator><creator>Proffen, Thomas</creator><creator>Riley, Daniel P</creator><creator>van Deventer, Jannie S J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100101</creationdate><title>Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin</title><author>White, Claire E ; Provis, John L ; Proffen, Thomas ; Riley, Daniel P ; van Deventer, Jannie S J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-6005b2c66c25a1112122144b8e0c952001746350dff82a4b4274b84f3fc4ae8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Claire E</creatorcontrib><creatorcontrib>Provis, John L</creatorcontrib><creatorcontrib>Proffen, Thomas</creatorcontrib><creatorcontrib>Riley, Daniel P</creatorcontrib><creatorcontrib>van Deventer, Jannie S J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>White, Claire E</au><au>Provis, John L</au><au>Proffen, Thomas</au><au>Riley, Daniel P</au><au>van Deventer, Jannie S J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>12</volume><issue>13</issue><spage>3239</spage><epage>3245</epage><pages>3239-3245</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Understanding the atomic structure of complex metastable (including glassy) materials is of great importance in research and industry, however, such materials resist solution by most standard techniques. Here, a novel technique combining thermodynamics and local structure is presented to solve the structure of the metastable aluminosilicate material metakaolin (calcined kaolinite) without the use of chemical constraints. The structure is elucidated by iterating between least-squares real-space refinement using neutron pair distribution function data, and geometry optimisation using density functional modelling. The resulting structural representation is both energetically feasible and in excellent agreement with experimental data. This accurate structural representation of metakaolin provides new insight into the local environment of the aluminium atoms, with evidence of the existence of tri-coordinated aluminium. By the availability of this detailed chemically feasible atomic description, without the need to artificially impose constraints during the refinement process, there exists the opportunity to tailor chemical and mechanical processes involving metakaolin and other complex metastable materials at the atomic level to obtain optimal performance at the macro-scale.</abstract><cop>England</cop><pmid>20237714</pmid><doi>10.1039/b922993k</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2010-01, Vol.12 (13), p.3239-3245 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_733390041 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
title | Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combining%20density%20functional%20theory%20(DFT)%20and%20pair%20distribution%20function%20(PDF)%20analysis%20to%20solve%20the%20structure%20of%20metastable%20materials:%20the%20case%20of%20metakaolin&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=White,%20Claire%20E&rft.date=2010-01-01&rft.volume=12&rft.issue=13&rft.spage=3239&rft.epage=3245&rft.pages=3239-3245&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/b922993k&rft_dat=%3Cproquest_cross%3E733390041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733390041&rft_id=info:pmid/20237714&rfr_iscdi=true |