Compression Behavior of Single-Layer Graphenes

Central to most applications involving monolayer graphenes is its mechanical response under various stress states. To date most of the work reported is of theoretical nature and refers to tension and compression loading of model graphenes. Most of the experimental work is indeed limited to the bendi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2010-06, Vol.4 (6), p.3131-3138
Hauptverfasser: Frank, Otakar, Tsoukleri, Georgia, Parthenios, John, Papagelis, Konstantinos, Riaz, Ibtsam, Jalil, Rashid, Novoselov, Kostya S, Galiotis, Costas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3138
container_issue 6
container_start_page 3131
container_title ACS nano
container_volume 4
creator Frank, Otakar
Tsoukleri, Georgia
Parthenios, John
Papagelis, Konstantinos
Riaz, Ibtsam
Jalil, Rashid
Novoselov, Kostya S
Galiotis, Costas
description Central to most applications involving monolayer graphenes is its mechanical response under various stress states. To date most of the work reported is of theoretical nature and refers to tension and compression loading of model graphenes. Most of the experimental work is indeed limited to the bending of single flakes in air and the stretching of flakes up to typically ∼1% using plastic substrates. Recently we have shown that by employing a cantilever beam we can subject single graphenes to various degrees of axial compression. Here we extend this work much further by measuring in detail both stress uptake and compression buckling strain in single flakes of different geometries. In all cases the mechanical response is monitored by simultaneous Raman measurements through the shift of either the G or 2D phonons of graphene. Despite the infinitely small thickness of the monolayers, the results show that graphenes embedded in plastic beams exhibit remarkable compression buckling strains. For large length (l)-to-width (w) ratios (≥0.2) the buckling strain is of the order of −0.5% to −0.6%. However, for l/w < 0.2 no failure is observed for strains even higher than −1%. Calculations based on classical Euler analysis show that the buckling strain enhancement provided by the polymer lateral support is more than 6 orders of magnitude compared to that of suspended graphene in air.
doi_str_mv 10.1021/nn100454w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733372268</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733372268</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-75e3396fbf25d528a5de23804ed5bea2a42a64bd4d36731fc56fba52f96ff4463</originalsourceid><addsrcrecordid>eNpt0E9LwzAYBvAgipvTg19AehHx0Jn_7Y5adAoDDyp4C2n7xnW0SU1WZd_eyOZOnvJCfu8D74PQOcFTgim5sZZgzAX_PkBjMmMyxbl8P9zPgozQSQgrjEWWZ_IYjSjmM5nnZIymhet6DyE0ziZ3sNRfjfOJM8lLYz9aSBd6Az6Ze90vwUI4RUdGtwHOdu8EvT3cvxaP6eJ5_lTcLlLNcrxOMwGMzaQpDRW1oLkWNdD4w6EWJWiqOdWSlzWvmcwYMZWIVgtq4o7hXLIJutrm9t59DhDWqmtCBW2rLbghqIwxllEq8yivt7LyLgQPRvW-6bTfKILVbztq3060F7vUoeyg3su_OiK43AJdBbVyg7fxyH-CfgAAMWqz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733372268</pqid></control><display><type>article</type><title>Compression Behavior of Single-Layer Graphenes</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Frank, Otakar ; Tsoukleri, Georgia ; Parthenios, John ; Papagelis, Konstantinos ; Riaz, Ibtsam ; Jalil, Rashid ; Novoselov, Kostya S ; Galiotis, Costas</creator><creatorcontrib>Frank, Otakar ; Tsoukleri, Georgia ; Parthenios, John ; Papagelis, Konstantinos ; Riaz, Ibtsam ; Jalil, Rashid ; Novoselov, Kostya S ; Galiotis, Costas</creatorcontrib><description>Central to most applications involving monolayer graphenes is its mechanical response under various stress states. To date most of the work reported is of theoretical nature and refers to tension and compression loading of model graphenes. Most of the experimental work is indeed limited to the bending of single flakes in air and the stretching of flakes up to typically ∼1% using plastic substrates. Recently we have shown that by employing a cantilever beam we can subject single graphenes to various degrees of axial compression. Here we extend this work much further by measuring in detail both stress uptake and compression buckling strain in single flakes of different geometries. In all cases the mechanical response is monitored by simultaneous Raman measurements through the shift of either the G or 2D phonons of graphene. Despite the infinitely small thickness of the monolayers, the results show that graphenes embedded in plastic beams exhibit remarkable compression buckling strains. For large length (l)-to-width (w) ratios (≥0.2) the buckling strain is of the order of −0.5% to −0.6%. However, for l/w &lt; 0.2 no failure is observed for strains even higher than −1%. Calculations based on classical Euler analysis show that the buckling strain enhancement provided by the polymer lateral support is more than 6 orders of magnitude compared to that of suspended graphene in air.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn100454w</identifier><identifier>PMID: 20496881</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Compressive Strength ; Computer Simulation ; Elastic Modulus ; Graphite - chemistry ; Hardness ; Macromolecular Substances - chemistry ; Materials Testing ; Membranes, Artificial ; Models, Chemical ; Molecular Conformation ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Particle Size ; Stress, Mechanical ; Surface Properties</subject><ispartof>ACS nano, 2010-06, Vol.4 (6), p.3131-3138</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-75e3396fbf25d528a5de23804ed5bea2a42a64bd4d36731fc56fba52f96ff4463</citedby><cites>FETCH-LOGICAL-a380t-75e3396fbf25d528a5de23804ed5bea2a42a64bd4d36731fc56fba52f96ff4463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn100454w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn100454w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20496881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Frank, Otakar</creatorcontrib><creatorcontrib>Tsoukleri, Georgia</creatorcontrib><creatorcontrib>Parthenios, John</creatorcontrib><creatorcontrib>Papagelis, Konstantinos</creatorcontrib><creatorcontrib>Riaz, Ibtsam</creatorcontrib><creatorcontrib>Jalil, Rashid</creatorcontrib><creatorcontrib>Novoselov, Kostya S</creatorcontrib><creatorcontrib>Galiotis, Costas</creatorcontrib><title>Compression Behavior of Single-Layer Graphenes</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Central to most applications involving monolayer graphenes is its mechanical response under various stress states. To date most of the work reported is of theoretical nature and refers to tension and compression loading of model graphenes. Most of the experimental work is indeed limited to the bending of single flakes in air and the stretching of flakes up to typically ∼1% using plastic substrates. Recently we have shown that by employing a cantilever beam we can subject single graphenes to various degrees of axial compression. Here we extend this work much further by measuring in detail both stress uptake and compression buckling strain in single flakes of different geometries. In all cases the mechanical response is monitored by simultaneous Raman measurements through the shift of either the G or 2D phonons of graphene. Despite the infinitely small thickness of the monolayers, the results show that graphenes embedded in plastic beams exhibit remarkable compression buckling strains. For large length (l)-to-width (w) ratios (≥0.2) the buckling strain is of the order of −0.5% to −0.6%. However, for l/w &lt; 0.2 no failure is observed for strains even higher than −1%. Calculations based on classical Euler analysis show that the buckling strain enhancement provided by the polymer lateral support is more than 6 orders of magnitude compared to that of suspended graphene in air.</description><subject>Compressive Strength</subject><subject>Computer Simulation</subject><subject>Elastic Modulus</subject><subject>Graphite - chemistry</subject><subject>Hardness</subject><subject>Macromolecular Substances - chemistry</subject><subject>Materials Testing</subject><subject>Membranes, Artificial</subject><subject>Models, Chemical</subject><subject>Molecular Conformation</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Particle Size</subject><subject>Stress, Mechanical</subject><subject>Surface Properties</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E9LwzAYBvAgipvTg19AehHx0Jn_7Y5adAoDDyp4C2n7xnW0SU1WZd_eyOZOnvJCfu8D74PQOcFTgim5sZZgzAX_PkBjMmMyxbl8P9zPgozQSQgrjEWWZ_IYjSjmM5nnZIymhet6DyE0ziZ3sNRfjfOJM8lLYz9aSBd6Az6Ze90vwUI4RUdGtwHOdu8EvT3cvxaP6eJ5_lTcLlLNcrxOMwGMzaQpDRW1oLkWNdD4w6EWJWiqOdWSlzWvmcwYMZWIVgtq4o7hXLIJutrm9t59DhDWqmtCBW2rLbghqIwxllEq8yivt7LyLgQPRvW-6bTfKILVbztq3060F7vUoeyg3su_OiK43AJdBbVyg7fxyH-CfgAAMWqz</recordid><startdate>20100622</startdate><enddate>20100622</enddate><creator>Frank, Otakar</creator><creator>Tsoukleri, Georgia</creator><creator>Parthenios, John</creator><creator>Papagelis, Konstantinos</creator><creator>Riaz, Ibtsam</creator><creator>Jalil, Rashid</creator><creator>Novoselov, Kostya S</creator><creator>Galiotis, Costas</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100622</creationdate><title>Compression Behavior of Single-Layer Graphenes</title><author>Frank, Otakar ; Tsoukleri, Georgia ; Parthenios, John ; Papagelis, Konstantinos ; Riaz, Ibtsam ; Jalil, Rashid ; Novoselov, Kostya S ; Galiotis, Costas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-75e3396fbf25d528a5de23804ed5bea2a42a64bd4d36731fc56fba52f96ff4463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Compressive Strength</topic><topic>Computer Simulation</topic><topic>Elastic Modulus</topic><topic>Graphite - chemistry</topic><topic>Hardness</topic><topic>Macromolecular Substances - chemistry</topic><topic>Materials Testing</topic><topic>Membranes, Artificial</topic><topic>Models, Chemical</topic><topic>Molecular Conformation</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Particle Size</topic><topic>Stress, Mechanical</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frank, Otakar</creatorcontrib><creatorcontrib>Tsoukleri, Georgia</creatorcontrib><creatorcontrib>Parthenios, John</creatorcontrib><creatorcontrib>Papagelis, Konstantinos</creatorcontrib><creatorcontrib>Riaz, Ibtsam</creatorcontrib><creatorcontrib>Jalil, Rashid</creatorcontrib><creatorcontrib>Novoselov, Kostya S</creatorcontrib><creatorcontrib>Galiotis, Costas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frank, Otakar</au><au>Tsoukleri, Georgia</au><au>Parthenios, John</au><au>Papagelis, Konstantinos</au><au>Riaz, Ibtsam</au><au>Jalil, Rashid</au><au>Novoselov, Kostya S</au><au>Galiotis, Costas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compression Behavior of Single-Layer Graphenes</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2010-06-22</date><risdate>2010</risdate><volume>4</volume><issue>6</issue><spage>3131</spage><epage>3138</epage><pages>3131-3138</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Central to most applications involving monolayer graphenes is its mechanical response under various stress states. To date most of the work reported is of theoretical nature and refers to tension and compression loading of model graphenes. Most of the experimental work is indeed limited to the bending of single flakes in air and the stretching of flakes up to typically ∼1% using plastic substrates. Recently we have shown that by employing a cantilever beam we can subject single graphenes to various degrees of axial compression. Here we extend this work much further by measuring in detail both stress uptake and compression buckling strain in single flakes of different geometries. In all cases the mechanical response is monitored by simultaneous Raman measurements through the shift of either the G or 2D phonons of graphene. Despite the infinitely small thickness of the monolayers, the results show that graphenes embedded in plastic beams exhibit remarkable compression buckling strains. For large length (l)-to-width (w) ratios (≥0.2) the buckling strain is of the order of −0.5% to −0.6%. However, for l/w &lt; 0.2 no failure is observed for strains even higher than −1%. Calculations based on classical Euler analysis show that the buckling strain enhancement provided by the polymer lateral support is more than 6 orders of magnitude compared to that of suspended graphene in air.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20496881</pmid><doi>10.1021/nn100454w</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2010-06, Vol.4 (6), p.3131-3138
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_733372268
source MEDLINE; American Chemical Society Journals
subjects Compressive Strength
Computer Simulation
Elastic Modulus
Graphite - chemistry
Hardness
Macromolecular Substances - chemistry
Materials Testing
Membranes, Artificial
Models, Chemical
Molecular Conformation
Nanostructures - chemistry
Nanostructures - ultrastructure
Particle Size
Stress, Mechanical
Surface Properties
title Compression Behavior of Single-Layer Graphenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T17%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compression%20Behavior%20of%20Single-Layer%20Graphenes&rft.jtitle=ACS%20nano&rft.au=Frank,%20Otakar&rft.date=2010-06-22&rft.volume=4&rft.issue=6&rft.spage=3131&rft.epage=3138&rft.pages=3131-3138&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn100454w&rft_dat=%3Cproquest_cross%3E733372268%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733372268&rft_id=info:pmid/20496881&rfr_iscdi=true