Flame Retardant Behavior of Polyelectrolyte−Clay Thin Film Assemblies on Cotton Fabric

Cotton fabric was treated with flame-retardant coatings composed of branched polyethylenimine (BPEI) and sodium montmorillonite (MMT) clay, prepared via layer-by-layer (LbL) assembly. Four coating recipes were created by exposing fabric to aqueous solutions of BPEI (pH 7 or 10) and MMT (0.2 or 1 wt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2010-06, Vol.4 (6), p.3325-3337
Hauptverfasser: Li, Yu-Chin, Schulz, Jessica, Mannen, Sarah, Delhom, Chris, Condon, Brian, Chang, SeChin, Zammarano, Mauro, Grunlan, Jaime C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3337
container_issue 6
container_start_page 3325
container_title ACS nano
container_volume 4
creator Li, Yu-Chin
Schulz, Jessica
Mannen, Sarah
Delhom, Chris
Condon, Brian
Chang, SeChin
Zammarano, Mauro
Grunlan, Jaime C
description Cotton fabric was treated with flame-retardant coatings composed of branched polyethylenimine (BPEI) and sodium montmorillonite (MMT) clay, prepared via layer-by-layer (LbL) assembly. Four coating recipes were created by exposing fabric to aqueous solutions of BPEI (pH 7 or 10) and MMT (0.2 or 1 wt %). BPEI pH 10 produces the thickest films, while 1 wt % MMT gives the highest clay loading. Each coating recipe was evaluated at 5 and 20 bilayers. Thermogravimetric analysis showed that coated fabrics left as much as 13% char after heating to 500 °C, nearly 2 orders of magnitude more than uncoated fabric, with less than 4 wt % coming from the coating itself. These coatings also reduced afterglow time in vertical flame tests. Postburn residues of coated fabrics were examined with SEM and revealed that the weave structure and fiber shape in all coated fabrics were preserved. The BPEI pH 7/1 wt % MMT recipe was most effective. Microcombustion calorimeter testing showed that all coated fabrics reduced the total heat release and heat release capacity of the fabric. Fiber count and strength of uncoated and coated fabric are similar. These results demonstrate that LbL assembly is a relatively simple method for imparting flame-retardant behavior to cotton fabric. This work lays the foundation for using these types of thin film assemblies to make a variety of complex substrates (foam, fabrics, etc.) flame resistant.
doi_str_mv 10.1021/nn100467e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733371720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733371720</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-599e3a20c1692d31a1721a81016142bdce1d686f715dab190ee9270ab20388213</originalsourceid><addsrcrecordid>eNptkMFKw0AURQdRbK0u_AGZjYiL6LyZdjJZ1mBUKChSobswSV5oyiRTZxKhf-DaT_RLjLR25erexeHAvYScA7sBxuG2aYCxsQzxgAwhEjJgSi4O930CA3Li_YqxSahCeUwGnI0jqZQYkkVidI30FVvtCt209A6X-qOyjtqSvlizQYN56_rS4vfnV2z0hs6XVUOTytR06j3WmanQU9vQ2LZtH4nOXJWfkqNSG49nuxyRt-R-Hj8Gs-eHp3g6C7RQrA0mUYRCc5aDjHghQEPIQStgIGHMsyJHKKSSZQiTQmcQMcSIh0xnnAmlOIgRudp6186-d-jbtK58jsboBm3n01AIEfZS1pPXWzJ31nuHZbp2Va3dJgWW_v6Y7n_s2YudtctqLPbk33E9cLkFdO7Tle1c04_8R_QD6ud5WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733371720</pqid></control><display><type>article</type><title>Flame Retardant Behavior of Polyelectrolyte−Clay Thin Film Assemblies on Cotton Fabric</title><source>MEDLINE</source><source>ACS Publications</source><creator>Li, Yu-Chin ; Schulz, Jessica ; Mannen, Sarah ; Delhom, Chris ; Condon, Brian ; Chang, SeChin ; Zammarano, Mauro ; Grunlan, Jaime C</creator><creatorcontrib>Li, Yu-Chin ; Schulz, Jessica ; Mannen, Sarah ; Delhom, Chris ; Condon, Brian ; Chang, SeChin ; Zammarano, Mauro ; Grunlan, Jaime C</creatorcontrib><description>Cotton fabric was treated with flame-retardant coatings composed of branched polyethylenimine (BPEI) and sodium montmorillonite (MMT) clay, prepared via layer-by-layer (LbL) assembly. Four coating recipes were created by exposing fabric to aqueous solutions of BPEI (pH 7 or 10) and MMT (0.2 or 1 wt %). BPEI pH 10 produces the thickest films, while 1 wt % MMT gives the highest clay loading. Each coating recipe was evaluated at 5 and 20 bilayers. Thermogravimetric analysis showed that coated fabrics left as much as 13% char after heating to 500 °C, nearly 2 orders of magnitude more than uncoated fabric, with less than 4 wt % coming from the coating itself. These coatings also reduced afterglow time in vertical flame tests. Postburn residues of coated fabrics were examined with SEM and revealed that the weave structure and fiber shape in all coated fabrics were preserved. The BPEI pH 7/1 wt % MMT recipe was most effective. Microcombustion calorimeter testing showed that all coated fabrics reduced the total heat release and heat release capacity of the fabric. Fiber count and strength of uncoated and coated fabric are similar. These results demonstrate that LbL assembly is a relatively simple method for imparting flame-retardant behavior to cotton fabric. This work lays the foundation for using these types of thin film assemblies to make a variety of complex substrates (foam, fabrics, etc.) flame resistant.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn100467e</identifier><identifier>PMID: 20496883</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aluminum Silicates - chemistry ; Cotton Fiber ; Crystallization - methods ; Electrolytes - chemistry ; Flame Retardants - chemical synthesis ; Hot Temperature ; Macromolecular Substances - chemistry ; Materials Testing ; Membranes, Artificial ; Molecular Conformation ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology - methods ; Particle Size ; Surface Properties</subject><ispartof>ACS nano, 2010-06, Vol.4 (6), p.3325-3337</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-599e3a20c1692d31a1721a81016142bdce1d686f715dab190ee9270ab20388213</citedby><cites>FETCH-LOGICAL-a380t-599e3a20c1692d31a1721a81016142bdce1d686f715dab190ee9270ab20388213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn100467e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn100467e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20496883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yu-Chin</creatorcontrib><creatorcontrib>Schulz, Jessica</creatorcontrib><creatorcontrib>Mannen, Sarah</creatorcontrib><creatorcontrib>Delhom, Chris</creatorcontrib><creatorcontrib>Condon, Brian</creatorcontrib><creatorcontrib>Chang, SeChin</creatorcontrib><creatorcontrib>Zammarano, Mauro</creatorcontrib><creatorcontrib>Grunlan, Jaime C</creatorcontrib><title>Flame Retardant Behavior of Polyelectrolyte−Clay Thin Film Assemblies on Cotton Fabric</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Cotton fabric was treated with flame-retardant coatings composed of branched polyethylenimine (BPEI) and sodium montmorillonite (MMT) clay, prepared via layer-by-layer (LbL) assembly. Four coating recipes were created by exposing fabric to aqueous solutions of BPEI (pH 7 or 10) and MMT (0.2 or 1 wt %). BPEI pH 10 produces the thickest films, while 1 wt % MMT gives the highest clay loading. Each coating recipe was evaluated at 5 and 20 bilayers. Thermogravimetric analysis showed that coated fabrics left as much as 13% char after heating to 500 °C, nearly 2 orders of magnitude more than uncoated fabric, with less than 4 wt % coming from the coating itself. These coatings also reduced afterglow time in vertical flame tests. Postburn residues of coated fabrics were examined with SEM and revealed that the weave structure and fiber shape in all coated fabrics were preserved. The BPEI pH 7/1 wt % MMT recipe was most effective. Microcombustion calorimeter testing showed that all coated fabrics reduced the total heat release and heat release capacity of the fabric. Fiber count and strength of uncoated and coated fabric are similar. These results demonstrate that LbL assembly is a relatively simple method for imparting flame-retardant behavior to cotton fabric. This work lays the foundation for using these types of thin film assemblies to make a variety of complex substrates (foam, fabrics, etc.) flame resistant.</description><subject>Aluminum Silicates - chemistry</subject><subject>Cotton Fiber</subject><subject>Crystallization - methods</subject><subject>Electrolytes - chemistry</subject><subject>Flame Retardants - chemical synthesis</subject><subject>Hot Temperature</subject><subject>Macromolecular Substances - chemistry</subject><subject>Materials Testing</subject><subject>Membranes, Artificial</subject><subject>Molecular Conformation</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology - methods</subject><subject>Particle Size</subject><subject>Surface Properties</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMFKw0AURQdRbK0u_AGZjYiL6LyZdjJZ1mBUKChSobswSV5oyiRTZxKhf-DaT_RLjLR25erexeHAvYScA7sBxuG2aYCxsQzxgAwhEjJgSi4O930CA3Li_YqxSahCeUwGnI0jqZQYkkVidI30FVvtCt209A6X-qOyjtqSvlizQYN56_rS4vfnV2z0hs6XVUOTytR06j3WmanQU9vQ2LZtH4nOXJWfkqNSG49nuxyRt-R-Hj8Gs-eHp3g6C7RQrA0mUYRCc5aDjHghQEPIQStgIGHMsyJHKKSSZQiTQmcQMcSIh0xnnAmlOIgRudp6186-d-jbtK58jsboBm3n01AIEfZS1pPXWzJ31nuHZbp2Va3dJgWW_v6Y7n_s2YudtctqLPbk33E9cLkFdO7Tle1c04_8R_QD6ud5WQ</recordid><startdate>20100622</startdate><enddate>20100622</enddate><creator>Li, Yu-Chin</creator><creator>Schulz, Jessica</creator><creator>Mannen, Sarah</creator><creator>Delhom, Chris</creator><creator>Condon, Brian</creator><creator>Chang, SeChin</creator><creator>Zammarano, Mauro</creator><creator>Grunlan, Jaime C</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100622</creationdate><title>Flame Retardant Behavior of Polyelectrolyte−Clay Thin Film Assemblies on Cotton Fabric</title><author>Li, Yu-Chin ; Schulz, Jessica ; Mannen, Sarah ; Delhom, Chris ; Condon, Brian ; Chang, SeChin ; Zammarano, Mauro ; Grunlan, Jaime C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-599e3a20c1692d31a1721a81016142bdce1d686f715dab190ee9270ab20388213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aluminum Silicates - chemistry</topic><topic>Cotton Fiber</topic><topic>Crystallization - methods</topic><topic>Electrolytes - chemistry</topic><topic>Flame Retardants - chemical synthesis</topic><topic>Hot Temperature</topic><topic>Macromolecular Substances - chemistry</topic><topic>Materials Testing</topic><topic>Membranes, Artificial</topic><topic>Molecular Conformation</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology - methods</topic><topic>Particle Size</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yu-Chin</creatorcontrib><creatorcontrib>Schulz, Jessica</creatorcontrib><creatorcontrib>Mannen, Sarah</creatorcontrib><creatorcontrib>Delhom, Chris</creatorcontrib><creatorcontrib>Condon, Brian</creatorcontrib><creatorcontrib>Chang, SeChin</creatorcontrib><creatorcontrib>Zammarano, Mauro</creatorcontrib><creatorcontrib>Grunlan, Jaime C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yu-Chin</au><au>Schulz, Jessica</au><au>Mannen, Sarah</au><au>Delhom, Chris</au><au>Condon, Brian</au><au>Chang, SeChin</au><au>Zammarano, Mauro</au><au>Grunlan, Jaime C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flame Retardant Behavior of Polyelectrolyte−Clay Thin Film Assemblies on Cotton Fabric</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2010-06-22</date><risdate>2010</risdate><volume>4</volume><issue>6</issue><spage>3325</spage><epage>3337</epage><pages>3325-3337</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Cotton fabric was treated with flame-retardant coatings composed of branched polyethylenimine (BPEI) and sodium montmorillonite (MMT) clay, prepared via layer-by-layer (LbL) assembly. Four coating recipes were created by exposing fabric to aqueous solutions of BPEI (pH 7 or 10) and MMT (0.2 or 1 wt %). BPEI pH 10 produces the thickest films, while 1 wt % MMT gives the highest clay loading. Each coating recipe was evaluated at 5 and 20 bilayers. Thermogravimetric analysis showed that coated fabrics left as much as 13% char after heating to 500 °C, nearly 2 orders of magnitude more than uncoated fabric, with less than 4 wt % coming from the coating itself. These coatings also reduced afterglow time in vertical flame tests. Postburn residues of coated fabrics were examined with SEM and revealed that the weave structure and fiber shape in all coated fabrics were preserved. The BPEI pH 7/1 wt % MMT recipe was most effective. Microcombustion calorimeter testing showed that all coated fabrics reduced the total heat release and heat release capacity of the fabric. Fiber count and strength of uncoated and coated fabric are similar. These results demonstrate that LbL assembly is a relatively simple method for imparting flame-retardant behavior to cotton fabric. This work lays the foundation for using these types of thin film assemblies to make a variety of complex substrates (foam, fabrics, etc.) flame resistant.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20496883</pmid><doi>10.1021/nn100467e</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2010-06, Vol.4 (6), p.3325-3337
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_733371720
source MEDLINE; ACS Publications
subjects Aluminum Silicates - chemistry
Cotton Fiber
Crystallization - methods
Electrolytes - chemistry
Flame Retardants - chemical synthesis
Hot Temperature
Macromolecular Substances - chemistry
Materials Testing
Membranes, Artificial
Molecular Conformation
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology - methods
Particle Size
Surface Properties
title Flame Retardant Behavior of Polyelectrolyte−Clay Thin Film Assemblies on Cotton Fabric
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flame%20Retardant%20Behavior%20of%20Polyelectrolyte%E2%88%92Clay%20Thin%20Film%20Assemblies%20on%20Cotton%20Fabric&rft.jtitle=ACS%20nano&rft.au=Li,%20Yu-Chin&rft.date=2010-06-22&rft.volume=4&rft.issue=6&rft.spage=3325&rft.epage=3337&rft.pages=3325-3337&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn100467e&rft_dat=%3Cproquest_cross%3E733371720%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733371720&rft_id=info:pmid/20496883&rfr_iscdi=true