Flame Retardant Behavior of Polyelectrolyte−Clay Thin Film Assemblies on Cotton Fabric
Cotton fabric was treated with flame-retardant coatings composed of branched polyethylenimine (BPEI) and sodium montmorillonite (MMT) clay, prepared via layer-by-layer (LbL) assembly. Four coating recipes were created by exposing fabric to aqueous solutions of BPEI (pH 7 or 10) and MMT (0.2 or 1 wt...
Gespeichert in:
Veröffentlicht in: | ACS nano 2010-06, Vol.4 (6), p.3325-3337 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3337 |
---|---|
container_issue | 6 |
container_start_page | 3325 |
container_title | ACS nano |
container_volume | 4 |
creator | Li, Yu-Chin Schulz, Jessica Mannen, Sarah Delhom, Chris Condon, Brian Chang, SeChin Zammarano, Mauro Grunlan, Jaime C |
description | Cotton fabric was treated with flame-retardant coatings composed of branched polyethylenimine (BPEI) and sodium montmorillonite (MMT) clay, prepared via layer-by-layer (LbL) assembly. Four coating recipes were created by exposing fabric to aqueous solutions of BPEI (pH 7 or 10) and MMT (0.2 or 1 wt %). BPEI pH 10 produces the thickest films, while 1 wt % MMT gives the highest clay loading. Each coating recipe was evaluated at 5 and 20 bilayers. Thermogravimetric analysis showed that coated fabrics left as much as 13% char after heating to 500 °C, nearly 2 orders of magnitude more than uncoated fabric, with less than 4 wt % coming from the coating itself. These coatings also reduced afterglow time in vertical flame tests. Postburn residues of coated fabrics were examined with SEM and revealed that the weave structure and fiber shape in all coated fabrics were preserved. The BPEI pH 7/1 wt % MMT recipe was most effective. Microcombustion calorimeter testing showed that all coated fabrics reduced the total heat release and heat release capacity of the fabric. Fiber count and strength of uncoated and coated fabric are similar. These results demonstrate that LbL assembly is a relatively simple method for imparting flame-retardant behavior to cotton fabric. This work lays the foundation for using these types of thin film assemblies to make a variety of complex substrates (foam, fabrics, etc.) flame resistant. |
doi_str_mv | 10.1021/nn100467e |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733371720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733371720</sourcerecordid><originalsourceid>FETCH-LOGICAL-a380t-599e3a20c1692d31a1721a81016142bdce1d686f715dab190ee9270ab20388213</originalsourceid><addsrcrecordid>eNptkMFKw0AURQdRbK0u_AGZjYiL6LyZdjJZ1mBUKChSobswSV5oyiRTZxKhf-DaT_RLjLR25erexeHAvYScA7sBxuG2aYCxsQzxgAwhEjJgSi4O930CA3Li_YqxSahCeUwGnI0jqZQYkkVidI30FVvtCt209A6X-qOyjtqSvlizQYN56_rS4vfnV2z0hs6XVUOTytR06j3WmanQU9vQ2LZtH4nOXJWfkqNSG49nuxyRt-R-Hj8Gs-eHp3g6C7RQrA0mUYRCc5aDjHghQEPIQStgIGHMsyJHKKSSZQiTQmcQMcSIh0xnnAmlOIgRudp6186-d-jbtK58jsboBm3n01AIEfZS1pPXWzJ31nuHZbp2Va3dJgWW_v6Y7n_s2YudtctqLPbk33E9cLkFdO7Tle1c04_8R_QD6ud5WQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733371720</pqid></control><display><type>article</type><title>Flame Retardant Behavior of Polyelectrolyte−Clay Thin Film Assemblies on Cotton Fabric</title><source>MEDLINE</source><source>ACS Publications</source><creator>Li, Yu-Chin ; Schulz, Jessica ; Mannen, Sarah ; Delhom, Chris ; Condon, Brian ; Chang, SeChin ; Zammarano, Mauro ; Grunlan, Jaime C</creator><creatorcontrib>Li, Yu-Chin ; Schulz, Jessica ; Mannen, Sarah ; Delhom, Chris ; Condon, Brian ; Chang, SeChin ; Zammarano, Mauro ; Grunlan, Jaime C</creatorcontrib><description>Cotton fabric was treated with flame-retardant coatings composed of branched polyethylenimine (BPEI) and sodium montmorillonite (MMT) clay, prepared via layer-by-layer (LbL) assembly. Four coating recipes were created by exposing fabric to aqueous solutions of BPEI (pH 7 or 10) and MMT (0.2 or 1 wt %). BPEI pH 10 produces the thickest films, while 1 wt % MMT gives the highest clay loading. Each coating recipe was evaluated at 5 and 20 bilayers. Thermogravimetric analysis showed that coated fabrics left as much as 13% char after heating to 500 °C, nearly 2 orders of magnitude more than uncoated fabric, with less than 4 wt % coming from the coating itself. These coatings also reduced afterglow time in vertical flame tests. Postburn residues of coated fabrics were examined with SEM and revealed that the weave structure and fiber shape in all coated fabrics were preserved. The BPEI pH 7/1 wt % MMT recipe was most effective. Microcombustion calorimeter testing showed that all coated fabrics reduced the total heat release and heat release capacity of the fabric. Fiber count and strength of uncoated and coated fabric are similar. These results demonstrate that LbL assembly is a relatively simple method for imparting flame-retardant behavior to cotton fabric. This work lays the foundation for using these types of thin film assemblies to make a variety of complex substrates (foam, fabrics, etc.) flame resistant.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn100467e</identifier><identifier>PMID: 20496883</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aluminum Silicates - chemistry ; Cotton Fiber ; Crystallization - methods ; Electrolytes - chemistry ; Flame Retardants - chemical synthesis ; Hot Temperature ; Macromolecular Substances - chemistry ; Materials Testing ; Membranes, Artificial ; Molecular Conformation ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology - methods ; Particle Size ; Surface Properties</subject><ispartof>ACS nano, 2010-06, Vol.4 (6), p.3325-3337</ispartof><rights>Copyright © 2010 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a380t-599e3a20c1692d31a1721a81016142bdce1d686f715dab190ee9270ab20388213</citedby><cites>FETCH-LOGICAL-a380t-599e3a20c1692d31a1721a81016142bdce1d686f715dab190ee9270ab20388213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn100467e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn100467e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27074,27922,27923,56736,56786</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20496883$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yu-Chin</creatorcontrib><creatorcontrib>Schulz, Jessica</creatorcontrib><creatorcontrib>Mannen, Sarah</creatorcontrib><creatorcontrib>Delhom, Chris</creatorcontrib><creatorcontrib>Condon, Brian</creatorcontrib><creatorcontrib>Chang, SeChin</creatorcontrib><creatorcontrib>Zammarano, Mauro</creatorcontrib><creatorcontrib>Grunlan, Jaime C</creatorcontrib><title>Flame Retardant Behavior of Polyelectrolyte−Clay Thin Film Assemblies on Cotton Fabric</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Cotton fabric was treated with flame-retardant coatings composed of branched polyethylenimine (BPEI) and sodium montmorillonite (MMT) clay, prepared via layer-by-layer (LbL) assembly. Four coating recipes were created by exposing fabric to aqueous solutions of BPEI (pH 7 or 10) and MMT (0.2 or 1 wt %). BPEI pH 10 produces the thickest films, while 1 wt % MMT gives the highest clay loading. Each coating recipe was evaluated at 5 and 20 bilayers. Thermogravimetric analysis showed that coated fabrics left as much as 13% char after heating to 500 °C, nearly 2 orders of magnitude more than uncoated fabric, with less than 4 wt % coming from the coating itself. These coatings also reduced afterglow time in vertical flame tests. Postburn residues of coated fabrics were examined with SEM and revealed that the weave structure and fiber shape in all coated fabrics were preserved. The BPEI pH 7/1 wt % MMT recipe was most effective. Microcombustion calorimeter testing showed that all coated fabrics reduced the total heat release and heat release capacity of the fabric. Fiber count and strength of uncoated and coated fabric are similar. These results demonstrate that LbL assembly is a relatively simple method for imparting flame-retardant behavior to cotton fabric. This work lays the foundation for using these types of thin film assemblies to make a variety of complex substrates (foam, fabrics, etc.) flame resistant.</description><subject>Aluminum Silicates - chemistry</subject><subject>Cotton Fiber</subject><subject>Crystallization - methods</subject><subject>Electrolytes - chemistry</subject><subject>Flame Retardants - chemical synthesis</subject><subject>Hot Temperature</subject><subject>Macromolecular Substances - chemistry</subject><subject>Materials Testing</subject><subject>Membranes, Artificial</subject><subject>Molecular Conformation</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology - methods</subject><subject>Particle Size</subject><subject>Surface Properties</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkMFKw0AURQdRbK0u_AGZjYiL6LyZdjJZ1mBUKChSobswSV5oyiRTZxKhf-DaT_RLjLR25erexeHAvYScA7sBxuG2aYCxsQzxgAwhEjJgSi4O930CA3Li_YqxSahCeUwGnI0jqZQYkkVidI30FVvtCt209A6X-qOyjtqSvlizQYN56_rS4vfnV2z0hs6XVUOTytR06j3WmanQU9vQ2LZtH4nOXJWfkqNSG49nuxyRt-R-Hj8Gs-eHp3g6C7RQrA0mUYRCc5aDjHghQEPIQStgIGHMsyJHKKSSZQiTQmcQMcSIh0xnnAmlOIgRudp6186-d-jbtK58jsboBm3n01AIEfZS1pPXWzJ31nuHZbp2Va3dJgWW_v6Y7n_s2YudtctqLPbk33E9cLkFdO7Tle1c04_8R_QD6ud5WQ</recordid><startdate>20100622</startdate><enddate>20100622</enddate><creator>Li, Yu-Chin</creator><creator>Schulz, Jessica</creator><creator>Mannen, Sarah</creator><creator>Delhom, Chris</creator><creator>Condon, Brian</creator><creator>Chang, SeChin</creator><creator>Zammarano, Mauro</creator><creator>Grunlan, Jaime C</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100622</creationdate><title>Flame Retardant Behavior of Polyelectrolyte−Clay Thin Film Assemblies on Cotton Fabric</title><author>Li, Yu-Chin ; Schulz, Jessica ; Mannen, Sarah ; Delhom, Chris ; Condon, Brian ; Chang, SeChin ; Zammarano, Mauro ; Grunlan, Jaime C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a380t-599e3a20c1692d31a1721a81016142bdce1d686f715dab190ee9270ab20388213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aluminum Silicates - chemistry</topic><topic>Cotton Fiber</topic><topic>Crystallization - methods</topic><topic>Electrolytes - chemistry</topic><topic>Flame Retardants - chemical synthesis</topic><topic>Hot Temperature</topic><topic>Macromolecular Substances - chemistry</topic><topic>Materials Testing</topic><topic>Membranes, Artificial</topic><topic>Molecular Conformation</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology - methods</topic><topic>Particle Size</topic><topic>Surface Properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yu-Chin</creatorcontrib><creatorcontrib>Schulz, Jessica</creatorcontrib><creatorcontrib>Mannen, Sarah</creatorcontrib><creatorcontrib>Delhom, Chris</creatorcontrib><creatorcontrib>Condon, Brian</creatorcontrib><creatorcontrib>Chang, SeChin</creatorcontrib><creatorcontrib>Zammarano, Mauro</creatorcontrib><creatorcontrib>Grunlan, Jaime C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yu-Chin</au><au>Schulz, Jessica</au><au>Mannen, Sarah</au><au>Delhom, Chris</au><au>Condon, Brian</au><au>Chang, SeChin</au><au>Zammarano, Mauro</au><au>Grunlan, Jaime C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flame Retardant Behavior of Polyelectrolyte−Clay Thin Film Assemblies on Cotton Fabric</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2010-06-22</date><risdate>2010</risdate><volume>4</volume><issue>6</issue><spage>3325</spage><epage>3337</epage><pages>3325-3337</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Cotton fabric was treated with flame-retardant coatings composed of branched polyethylenimine (BPEI) and sodium montmorillonite (MMT) clay, prepared via layer-by-layer (LbL) assembly. Four coating recipes were created by exposing fabric to aqueous solutions of BPEI (pH 7 or 10) and MMT (0.2 or 1 wt %). BPEI pH 10 produces the thickest films, while 1 wt % MMT gives the highest clay loading. Each coating recipe was evaluated at 5 and 20 bilayers. Thermogravimetric analysis showed that coated fabrics left as much as 13% char after heating to 500 °C, nearly 2 orders of magnitude more than uncoated fabric, with less than 4 wt % coming from the coating itself. These coatings also reduced afterglow time in vertical flame tests. Postburn residues of coated fabrics were examined with SEM and revealed that the weave structure and fiber shape in all coated fabrics were preserved. The BPEI pH 7/1 wt % MMT recipe was most effective. Microcombustion calorimeter testing showed that all coated fabrics reduced the total heat release and heat release capacity of the fabric. Fiber count and strength of uncoated and coated fabric are similar. These results demonstrate that LbL assembly is a relatively simple method for imparting flame-retardant behavior to cotton fabric. This work lays the foundation for using these types of thin film assemblies to make a variety of complex substrates (foam, fabrics, etc.) flame resistant.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>20496883</pmid><doi>10.1021/nn100467e</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2010-06, Vol.4 (6), p.3325-3337 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_733371720 |
source | MEDLINE; ACS Publications |
subjects | Aluminum Silicates - chemistry Cotton Fiber Crystallization - methods Electrolytes - chemistry Flame Retardants - chemical synthesis Hot Temperature Macromolecular Substances - chemistry Materials Testing Membranes, Artificial Molecular Conformation Nanostructures - chemistry Nanostructures - ultrastructure Nanotechnology - methods Particle Size Surface Properties |
title | Flame Retardant Behavior of Polyelectrolyte−Clay Thin Film Assemblies on Cotton Fabric |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flame%20Retardant%20Behavior%20of%20Polyelectrolyte%E2%88%92Clay%20Thin%20Film%20Assemblies%20on%20Cotton%20Fabric&rft.jtitle=ACS%20nano&rft.au=Li,%20Yu-Chin&rft.date=2010-06-22&rft.volume=4&rft.issue=6&rft.spage=3325&rft.epage=3337&rft.pages=3325-3337&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn100467e&rft_dat=%3Cproquest_cross%3E733371720%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733371720&rft_id=info:pmid/20496883&rfr_iscdi=true |