Efficient Multilevel Eigensolvers with Applications to Data Analysis Tasks

Multigrid solvers proved very efficient for solving massive systems of equations in various fields. These solvers are based on iterative relaxation schemes together with the approximation of the "smooth" error function on a coarser level (grid). We present two efficient multilevel eigensol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2010-08, Vol.32 (8), p.1377-1391
Hauptverfasser: Kushnir, Dan, Galun, Meirav, Brandt, Achi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1391
container_issue 8
container_start_page 1377
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 32
creator Kushnir, Dan
Galun, Meirav
Brandt, Achi
description Multigrid solvers proved very efficient for solving massive systems of equations in various fields. These solvers are based on iterative relaxation schemes together with the approximation of the "smooth" error function on a coarser level (grid). We present two efficient multilevel eigensolvers for solving massive eigenvalue problems that emerge in data analysis tasks. The first solver, a version of classical algebraic multigrid (AMG), is applied to eigenproblems arising in clustering, image segmentation, and dimensionality reduction, demonstrating an order of magnitude speedup compared to the popular Lanczos algorithm. The second solver is based on a new, much more accurate interpolation scheme. It enables calculating a large number of eigenvectors very inexpensively.
doi_str_mv 10.1109/TPAMI.2009.147
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_733358333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5184845</ieee_id><sourcerecordid>753648347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-7e419b48aa88aba67a5165278f82989f519a513b7a7124883751ec1bdbb02cde3</originalsourceid><addsrcrecordid>eNqF0c9v0zAUB3ALgVg3uHJBQpHQxCnFzz_q52M1CgxtgkM5Ry-uAx5uUvKSof33pGsZEhcutmR_9JX9vkK8ADkHkP7t-svy-nKupPRzMO6RmIHXvtRW-8diJmGhSkSFJ-KU-UZKMFbqp-JESWsRnZqJT6umSSHFdiiuxzykHG9jLlbpW2y5y7ex5-JXGr4Xy90up0BD6louhq54RwMVy5byHScu1sQ_-Jl40lDm-Py4n4mv71fri4_l1ecPlxfLqzIYaYbSRQO-NkiESDUtHFlYWOWwQeXRNxb8dKJrRw6UQdTOQgxQb-paqrCJ-ky8OeTu-u7nGHmotolDzJna2I1cOasXBrVx_5daa4vTMsnX_8ibbuyn73EFUjk1Dczv8-YHFfqOuY9NtevTlvq7CVX7Oqr7Oqp9HRXcP-DVMXast3HzwP_MfwLnR0AcKDc9tSHxX6cBPKCf3MuDSzHGh2sLaNBY_Rv8r5lt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027220597</pqid></control><display><type>article</type><title>Efficient Multilevel Eigensolvers with Applications to Data Analysis Tasks</title><source>IEEE Electronic Library (IEL)</source><creator>Kushnir, Dan ; Galun, Meirav ; Brandt, Achi</creator><creatorcontrib>Kushnir, Dan ; Galun, Meirav ; Brandt, Achi</creatorcontrib><description>Multigrid solvers proved very efficient for solving massive systems of equations in various fields. These solvers are based on iterative relaxation schemes together with the approximation of the "smooth" error function on a coarser level (grid). We present two efficient multilevel eigensolvers for solving massive eigenvalue problems that emerge in data analysis tasks. The first solver, a version of classical algebraic multigrid (AMG), is applied to eigenproblems arising in clustering, image segmentation, and dimensionality reduction, demonstrating an order of magnitude speedup compared to the popular Lanczos algorithm. The second solver is based on a new, much more accurate interpolation scheme. It enables calculating a large number of eigenvectors very inexpensively.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2009.147</identifier><identifier>PMID: 20558872</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Approximation ; Artificial intelligence ; clustering ; Clustering algorithms ; Computational complexity ; Computer science; control theory; systems ; Data analysis ; Data processing ; Data processing. List processing. Character string processing ; Eigenvalues and eigenfunctions ; Eigenvalues and eigenvectors ; Equations ; Exact sciences and technology ; graph algorithms ; Image segmentation ; Interpolation ; Mathematical analysis ; Matrix decomposition ; Memory organisation. Data processing ; multigrid and multilevel methods ; Multilevel ; Pattern recognition. Digital image processing. Computational geometry ; Sampling methods ; segmentation ; Software ; Solvers ; Sparse matrices ; Tasks ; Theoretical computing</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2010-08, Vol.32 (8), p.1377-1391</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-7e419b48aa88aba67a5165278f82989f519a513b7a7124883751ec1bdbb02cde3</citedby><cites>FETCH-LOGICAL-c404t-7e419b48aa88aba67a5165278f82989f519a513b7a7124883751ec1bdbb02cde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5184845$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5184845$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23119189$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20558872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kushnir, Dan</creatorcontrib><creatorcontrib>Galun, Meirav</creatorcontrib><creatorcontrib>Brandt, Achi</creatorcontrib><title>Efficient Multilevel Eigensolvers with Applications to Data Analysis Tasks</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Multigrid solvers proved very efficient for solving massive systems of equations in various fields. These solvers are based on iterative relaxation schemes together with the approximation of the "smooth" error function on a coarser level (grid). We present two efficient multilevel eigensolvers for solving massive eigenvalue problems that emerge in data analysis tasks. The first solver, a version of classical algebraic multigrid (AMG), is applied to eigenproblems arising in clustering, image segmentation, and dimensionality reduction, demonstrating an order of magnitude speedup compared to the popular Lanczos algorithm. The second solver is based on a new, much more accurate interpolation scheme. It enables calculating a large number of eigenvectors very inexpensively.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Computational complexity</subject><subject>Computer science; control theory; systems</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Data processing. List processing. Character string processing</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Eigenvalues and eigenvectors</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>graph algorithms</subject><subject>Image segmentation</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Memory organisation. Data processing</subject><subject>multigrid and multilevel methods</subject><subject>Multilevel</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Sampling methods</subject><subject>segmentation</subject><subject>Software</subject><subject>Solvers</subject><subject>Sparse matrices</subject><subject>Tasks</subject><subject>Theoretical computing</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c9v0zAUB3ALgVg3uHJBQpHQxCnFzz_q52M1CgxtgkM5Ry-uAx5uUvKSof33pGsZEhcutmR_9JX9vkK8ADkHkP7t-svy-nKupPRzMO6RmIHXvtRW-8diJmGhSkSFJ-KU-UZKMFbqp-JESWsRnZqJT6umSSHFdiiuxzykHG9jLlbpW2y5y7ex5-JXGr4Xy90up0BD6louhq54RwMVy5byHScu1sQ_-Jl40lDm-Py4n4mv71fri4_l1ecPlxfLqzIYaYbSRQO-NkiESDUtHFlYWOWwQeXRNxb8dKJrRw6UQdTOQgxQb-paqrCJ-ky8OeTu-u7nGHmotolDzJna2I1cOasXBrVx_5daa4vTMsnX_8ibbuyn73EFUjk1Dczv8-YHFfqOuY9NtevTlvq7CVX7Oqr7Oqp9HRXcP-DVMXast3HzwP_MfwLnR0AcKDc9tSHxX6cBPKCf3MuDSzHGh2sLaNBY_Rv8r5lt</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Kushnir, Dan</creator><creator>Galun, Meirav</creator><creator>Brandt, Achi</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100801</creationdate><title>Efficient Multilevel Eigensolvers with Applications to Data Analysis Tasks</title><author>Kushnir, Dan ; Galun, Meirav ; Brandt, Achi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-7e419b48aa88aba67a5165278f82989f519a513b7a7124883751ec1bdbb02cde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Computational complexity</topic><topic>Computer science; control theory; systems</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Data processing. List processing. Character string processing</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Eigenvalues and eigenvectors</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>graph algorithms</topic><topic>Image segmentation</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Memory organisation. Data processing</topic><topic>multigrid and multilevel methods</topic><topic>Multilevel</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Sampling methods</topic><topic>segmentation</topic><topic>Software</topic><topic>Solvers</topic><topic>Sparse matrices</topic><topic>Tasks</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kushnir, Dan</creatorcontrib><creatorcontrib>Galun, Meirav</creatorcontrib><creatorcontrib>Brandt, Achi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kushnir, Dan</au><au>Galun, Meirav</au><au>Brandt, Achi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Multilevel Eigensolvers with Applications to Data Analysis Tasks</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>32</volume><issue>8</issue><spage>1377</spage><epage>1391</epage><pages>1377-1391</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Multigrid solvers proved very efficient for solving massive systems of equations in various fields. These solvers are based on iterative relaxation schemes together with the approximation of the "smooth" error function on a coarser level (grid). We present two efficient multilevel eigensolvers for solving massive eigenvalue problems that emerge in data analysis tasks. The first solver, a version of classical algebraic multigrid (AMG), is applied to eigenproblems arising in clustering, image segmentation, and dimensionality reduction, demonstrating an order of magnitude speedup compared to the popular Lanczos algorithm. The second solver is based on a new, much more accurate interpolation scheme. It enables calculating a large number of eigenvectors very inexpensively.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>20558872</pmid><doi>10.1109/TPAMI.2009.147</doi><tpages>15</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2010-08, Vol.32 (8), p.1377-1391
issn 0162-8828
1939-3539
language eng
recordid cdi_proquest_miscellaneous_733358333
source IEEE Electronic Library (IEL)
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Approximation
Artificial intelligence
clustering
Clustering algorithms
Computational complexity
Computer science
control theory
systems
Data analysis
Data processing
Data processing. List processing. Character string processing
Eigenvalues and eigenfunctions
Eigenvalues and eigenvectors
Equations
Exact sciences and technology
graph algorithms
Image segmentation
Interpolation
Mathematical analysis
Matrix decomposition
Memory organisation. Data processing
multigrid and multilevel methods
Multilevel
Pattern recognition. Digital image processing. Computational geometry
Sampling methods
segmentation
Software
Solvers
Sparse matrices
Tasks
Theoretical computing
title Efficient Multilevel Eigensolvers with Applications to Data Analysis Tasks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Multilevel%20Eigensolvers%20with%20Applications%20to%20Data%20Analysis%20Tasks&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Kushnir,%20Dan&rft.date=2010-08-01&rft.volume=32&rft.issue=8&rft.spage=1377&rft.epage=1391&rft.pages=1377-1391&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2009.147&rft_dat=%3Cproquest_RIE%3E753648347%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027220597&rft_id=info:pmid/20558872&rft_ieee_id=5184845&rfr_iscdi=true