Efficient Multilevel Eigensolvers with Applications to Data Analysis Tasks
Multigrid solvers proved very efficient for solving massive systems of equations in various fields. These solvers are based on iterative relaxation schemes together with the approximation of the "smooth" error function on a coarser level (grid). We present two efficient multilevel eigensol...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2010-08, Vol.32 (8), p.1377-1391 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1391 |
---|---|
container_issue | 8 |
container_start_page | 1377 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 32 |
creator | Kushnir, Dan Galun, Meirav Brandt, Achi |
description | Multigrid solvers proved very efficient for solving massive systems of equations in various fields. These solvers are based on iterative relaxation schemes together with the approximation of the "smooth" error function on a coarser level (grid). We present two efficient multilevel eigensolvers for solving massive eigenvalue problems that emerge in data analysis tasks. The first solver, a version of classical algebraic multigrid (AMG), is applied to eigenproblems arising in clustering, image segmentation, and dimensionality reduction, demonstrating an order of magnitude speedup compared to the popular Lanczos algorithm. The second solver is based on a new, much more accurate interpolation scheme. It enables calculating a large number of eigenvectors very inexpensively. |
doi_str_mv | 10.1109/TPAMI.2009.147 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_733358333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5184845</ieee_id><sourcerecordid>753648347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-7e419b48aa88aba67a5165278f82989f519a513b7a7124883751ec1bdbb02cde3</originalsourceid><addsrcrecordid>eNqF0c9v0zAUB3ALgVg3uHJBQpHQxCnFzz_q52M1CgxtgkM5Ry-uAx5uUvKSof33pGsZEhcutmR_9JX9vkK8ADkHkP7t-svy-nKupPRzMO6RmIHXvtRW-8diJmGhSkSFJ-KU-UZKMFbqp-JESWsRnZqJT6umSSHFdiiuxzykHG9jLlbpW2y5y7ex5-JXGr4Xy90up0BD6louhq54RwMVy5byHScu1sQ_-Jl40lDm-Py4n4mv71fri4_l1ecPlxfLqzIYaYbSRQO-NkiESDUtHFlYWOWwQeXRNxb8dKJrRw6UQdTOQgxQb-paqrCJ-ky8OeTu-u7nGHmotolDzJna2I1cOasXBrVx_5daa4vTMsnX_8ibbuyn73EFUjk1Dczv8-YHFfqOuY9NtevTlvq7CVX7Oqr7Oqp9HRXcP-DVMXast3HzwP_MfwLnR0AcKDc9tSHxX6cBPKCf3MuDSzHGh2sLaNBY_Rv8r5lt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027220597</pqid></control><display><type>article</type><title>Efficient Multilevel Eigensolvers with Applications to Data Analysis Tasks</title><source>IEEE Electronic Library (IEL)</source><creator>Kushnir, Dan ; Galun, Meirav ; Brandt, Achi</creator><creatorcontrib>Kushnir, Dan ; Galun, Meirav ; Brandt, Achi</creatorcontrib><description>Multigrid solvers proved very efficient for solving massive systems of equations in various fields. These solvers are based on iterative relaxation schemes together with the approximation of the "smooth" error function on a coarser level (grid). We present two efficient multilevel eigensolvers for solving massive eigenvalue problems that emerge in data analysis tasks. The first solver, a version of classical algebraic multigrid (AMG), is applied to eigenproblems arising in clustering, image segmentation, and dimensionality reduction, demonstrating an order of magnitude speedup compared to the popular Lanczos algorithm. The second solver is based on a new, much more accurate interpolation scheme. It enables calculating a large number of eigenvectors very inexpensively.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/TPAMI.2009.147</identifier><identifier>PMID: 20558872</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Approximation ; Artificial intelligence ; clustering ; Clustering algorithms ; Computational complexity ; Computer science; control theory; systems ; Data analysis ; Data processing ; Data processing. List processing. Character string processing ; Eigenvalues and eigenfunctions ; Eigenvalues and eigenvectors ; Equations ; Exact sciences and technology ; graph algorithms ; Image segmentation ; Interpolation ; Mathematical analysis ; Matrix decomposition ; Memory organisation. Data processing ; multigrid and multilevel methods ; Multilevel ; Pattern recognition. Digital image processing. Computational geometry ; Sampling methods ; segmentation ; Software ; Solvers ; Sparse matrices ; Tasks ; Theoretical computing</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2010-08, Vol.32 (8), p.1377-1391</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-7e419b48aa88aba67a5165278f82989f519a513b7a7124883751ec1bdbb02cde3</citedby><cites>FETCH-LOGICAL-c404t-7e419b48aa88aba67a5165278f82989f519a513b7a7124883751ec1bdbb02cde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5184845$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5184845$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23119189$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20558872$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kushnir, Dan</creatorcontrib><creatorcontrib>Galun, Meirav</creatorcontrib><creatorcontrib>Brandt, Achi</creatorcontrib><title>Efficient Multilevel Eigensolvers with Applications to Data Analysis Tasks</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Multigrid solvers proved very efficient for solving massive systems of equations in various fields. These solvers are based on iterative relaxation schemes together with the approximation of the "smooth" error function on a coarser level (grid). We present two efficient multilevel eigensolvers for solving massive eigenvalue problems that emerge in data analysis tasks. The first solver, a version of classical algebraic multigrid (AMG), is applied to eigenproblems arising in clustering, image segmentation, and dimensionality reduction, demonstrating an order of magnitude speedup compared to the popular Lanczos algorithm. The second solver is based on a new, much more accurate interpolation scheme. It enables calculating a large number of eigenvectors very inexpensively.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Artificial intelligence</subject><subject>clustering</subject><subject>Clustering algorithms</subject><subject>Computational complexity</subject><subject>Computer science; control theory; systems</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Data processing. List processing. Character string processing</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Eigenvalues and eigenvectors</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>graph algorithms</subject><subject>Image segmentation</subject><subject>Interpolation</subject><subject>Mathematical analysis</subject><subject>Matrix decomposition</subject><subject>Memory organisation. Data processing</subject><subject>multigrid and multilevel methods</subject><subject>Multilevel</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Sampling methods</subject><subject>segmentation</subject><subject>Software</subject><subject>Solvers</subject><subject>Sparse matrices</subject><subject>Tasks</subject><subject>Theoretical computing</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0c9v0zAUB3ALgVg3uHJBQpHQxCnFzz_q52M1CgxtgkM5Ry-uAx5uUvKSof33pGsZEhcutmR_9JX9vkK8ADkHkP7t-svy-nKupPRzMO6RmIHXvtRW-8diJmGhSkSFJ-KU-UZKMFbqp-JESWsRnZqJT6umSSHFdiiuxzykHG9jLlbpW2y5y7ex5-JXGr4Xy90up0BD6louhq54RwMVy5byHScu1sQ_-Jl40lDm-Py4n4mv71fri4_l1ecPlxfLqzIYaYbSRQO-NkiESDUtHFlYWOWwQeXRNxb8dKJrRw6UQdTOQgxQb-paqrCJ-ky8OeTu-u7nGHmotolDzJna2I1cOasXBrVx_5daa4vTMsnX_8ibbuyn73EFUjk1Dczv8-YHFfqOuY9NtevTlvq7CVX7Oqr7Oqp9HRXcP-DVMXast3HzwP_MfwLnR0AcKDc9tSHxX6cBPKCf3MuDSzHGh2sLaNBY_Rv8r5lt</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Kushnir, Dan</creator><creator>Galun, Meirav</creator><creator>Brandt, Achi</creator><general>IEEE</general><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100801</creationdate><title>Efficient Multilevel Eigensolvers with Applications to Data Analysis Tasks</title><author>Kushnir, Dan ; Galun, Meirav ; Brandt, Achi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-7e419b48aa88aba67a5165278f82989f519a513b7a7124883751ec1bdbb02cde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Artificial intelligence</topic><topic>clustering</topic><topic>Clustering algorithms</topic><topic>Computational complexity</topic><topic>Computer science; control theory; systems</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Data processing. List processing. Character string processing</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Eigenvalues and eigenvectors</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>graph algorithms</topic><topic>Image segmentation</topic><topic>Interpolation</topic><topic>Mathematical analysis</topic><topic>Matrix decomposition</topic><topic>Memory organisation. Data processing</topic><topic>multigrid and multilevel methods</topic><topic>Multilevel</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Sampling methods</topic><topic>segmentation</topic><topic>Software</topic><topic>Solvers</topic><topic>Sparse matrices</topic><topic>Tasks</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kushnir, Dan</creatorcontrib><creatorcontrib>Galun, Meirav</creatorcontrib><creatorcontrib>Brandt, Achi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kushnir, Dan</au><au>Galun, Meirav</au><au>Brandt, Achi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Multilevel Eigensolvers with Applications to Data Analysis Tasks</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2010-08-01</date><risdate>2010</risdate><volume>32</volume><issue>8</issue><spage>1377</spage><epage>1391</epage><pages>1377-1391</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Multigrid solvers proved very efficient for solving massive systems of equations in various fields. These solvers are based on iterative relaxation schemes together with the approximation of the "smooth" error function on a coarser level (grid). We present two efficient multilevel eigensolvers for solving massive eigenvalue problems that emerge in data analysis tasks. The first solver, a version of classical algebraic multigrid (AMG), is applied to eigenproblems arising in clustering, image segmentation, and dimensionality reduction, demonstrating an order of magnitude speedup compared to the popular Lanczos algorithm. The second solver is based on a new, much more accurate interpolation scheme. It enables calculating a large number of eigenvectors very inexpensively.</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><pmid>20558872</pmid><doi>10.1109/TPAMI.2009.147</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2010-08, Vol.32 (8), p.1377-1391 |
issn | 0162-8828 1939-3539 |
language | eng |
recordid | cdi_proquest_miscellaneous_733358333 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Approximation Artificial intelligence clustering Clustering algorithms Computational complexity Computer science control theory systems Data analysis Data processing Data processing. List processing. Character string processing Eigenvalues and eigenfunctions Eigenvalues and eigenvectors Equations Exact sciences and technology graph algorithms Image segmentation Interpolation Mathematical analysis Matrix decomposition Memory organisation. Data processing multigrid and multilevel methods Multilevel Pattern recognition. Digital image processing. Computational geometry Sampling methods segmentation Software Solvers Sparse matrices Tasks Theoretical computing |
title | Efficient Multilevel Eigensolvers with Applications to Data Analysis Tasks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A58%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Multilevel%20Eigensolvers%20with%20Applications%20to%20Data%20Analysis%20Tasks&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Kushnir,%20Dan&rft.date=2010-08-01&rft.volume=32&rft.issue=8&rft.spage=1377&rft.epage=1391&rft.pages=1377-1391&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2009.147&rft_dat=%3Cproquest_RIE%3E753648347%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1027220597&rft_id=info:pmid/20558872&rft_ieee_id=5184845&rfr_iscdi=true |