Therapeutic Angiogenesis by Implantation of a Capillary Structure Constituted of Human Adipose Tissue Microvascular Endothelial Cells

OBJECTIVE—We previously reported a novel technology for the engineering of a capillary network using an optical lithographic technique. To apply this technology to the therapy of ischemic diseases, we tested human omental microvascular endothelial cells (HOMECs) as an autologous cell source and dece...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2010-07, Vol.30 (7), p.1300-1306
Hauptverfasser: Yoshida, Tomoko, Komaki, Motohiro, Hattori, Hideshi, Negishi, Jun, Kishida, Akio, Morita, Ikuo, Abe, Mayumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1306
container_issue 7
container_start_page 1300
container_title Arteriosclerosis, thrombosis, and vascular biology
container_volume 30
creator Yoshida, Tomoko
Komaki, Motohiro
Hattori, Hideshi
Negishi, Jun
Kishida, Akio
Morita, Ikuo
Abe, Mayumi
description OBJECTIVE—We previously reported a novel technology for the engineering of a capillary network using an optical lithographic technique. To apply this technology to the therapy of ischemic diseases, we tested human omental microvascular endothelial cells (HOMECs) as an autologous cell source and decellularized human amniotic membranes (DC-AMs) as a pathogen-free and low immunogenic transplantation scaffold. METHODS AND RESULTS—Human umbilical vein endothelial cells were aligned on a patterned glass substrate and formed a capillary structure when transferred onto an amniotic membrane (AM). In contrast, HOMECs were scattered and did not form a capillary structure on AMs. Treatment of HOMECs with sphingosine 1-phosphate (S1P) inhibited HOMEC migration and enabled HOMEC formation of a capillary structure on AMs. Using quantitative RT-PCR and Western blot analyses, we demonstrated that the main S1P receptor in HOMECs is S1P2, which is lacking in human umbilical vein endothelial cells, and that inhibition of cell migration by S1P is mediated through an S1P2–Rho–Rho-associated kinase signaling pathway. Implantation of capillaries engineered on DC-AMs into a hindlimb ischemic nude mouse model significantly increased blood perfusion compared with controls. CONCLUSION—A capillary network consisting of HOMECs on DC-AMs can be engineered ex vivo using printing technology and S1P treatment. This method for regeneration of a capillary network may have therapeutic potential for ischemic diseases.
doi_str_mv 10.1161/ATVBAHA.109.198994
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733352068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733352068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4875-c6fdf69e3d7101d4c9078e3295581a5de87077b21132cbbc61f60f9b7d54fb293</originalsourceid><addsrcrecordid>eNpFkctu1DAUhiMEoqXwAiyQN4hVBt8TL0NUmEpFLBjYRo5z0jF44uBLqz4A741HM8DCso_8_UfHn6vqNcEbQiR53-2-f-i23YZgtSGqVYo_qS6JoLzmksmn5YwbVQvJ6UX1IsYfGGNOKX5eXVDMWbkkl9Xv3R6CXiEna1C33Fl_BwtEG9H4iG4Oq9NL0sn6BfkZadTr1TqnwyP6mkI2KQdAvV9isiknmI7QNh_0grrJrj4C2tkYM6DP1gR_r6PJJYyul8mnPTirHerBufiyejZrF-HVeb-qvn283vXb-vbLp5u-u60NbxtRGzlPs1TApoZgMnGjcNMCo0qIlmgxQdvgphkpIYyacTSSzBLPamwmweeRKnZVvTv1XYP_lSGm4WCjKRPoBXyOQ8MYExTLtpD0RJa5YwwwD2uwh_LwgeDhaH842y-1Gk72S-jNuX0eDzD9i_zVXYC3Z6Co0G4OejE2_ueoIkoKXDh-4h68SxDiT5cfIAx70C7th-M_MolFTTHBuCllXRYW7A_Enp8F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733352068</pqid></control><display><type>article</type><title>Therapeutic Angiogenesis by Implantation of a Capillary Structure Constituted of Human Adipose Tissue Microvascular Endothelial Cells</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>Alma/SFX Local Collection</source><creator>Yoshida, Tomoko ; Komaki, Motohiro ; Hattori, Hideshi ; Negishi, Jun ; Kishida, Akio ; Morita, Ikuo ; Abe, Mayumi</creator><creatorcontrib>Yoshida, Tomoko ; Komaki, Motohiro ; Hattori, Hideshi ; Negishi, Jun ; Kishida, Akio ; Morita, Ikuo ; Abe, Mayumi</creatorcontrib><description>OBJECTIVE—We previously reported a novel technology for the engineering of a capillary network using an optical lithographic technique. To apply this technology to the therapy of ischemic diseases, we tested human omental microvascular endothelial cells (HOMECs) as an autologous cell source and decellularized human amniotic membranes (DC-AMs) as a pathogen-free and low immunogenic transplantation scaffold. METHODS AND RESULTS—Human umbilical vein endothelial cells were aligned on a patterned glass substrate and formed a capillary structure when transferred onto an amniotic membrane (AM). In contrast, HOMECs were scattered and did not form a capillary structure on AMs. Treatment of HOMECs with sphingosine 1-phosphate (S1P) inhibited HOMEC migration and enabled HOMEC formation of a capillary structure on AMs. Using quantitative RT-PCR and Western blot analyses, we demonstrated that the main S1P receptor in HOMECs is S1P2, which is lacking in human umbilical vein endothelial cells, and that inhibition of cell migration by S1P is mediated through an S1P2–Rho–Rho-associated kinase signaling pathway. Implantation of capillaries engineered on DC-AMs into a hindlimb ischemic nude mouse model significantly increased blood perfusion compared with controls. CONCLUSION—A capillary network consisting of HOMECs on DC-AMs can be engineered ex vivo using printing technology and S1P treatment. This method for regeneration of a capillary network may have therapeutic potential for ischemic diseases.</description><identifier>ISSN: 1079-5642</identifier><identifier>EISSN: 1524-4636</identifier><identifier>DOI: 10.1161/ATVBAHA.109.198994</identifier><identifier>PMID: 20431071</identifier><identifier>CODEN: ATVBFA</identifier><language>eng</language><publisher>Philadelphia, PA: American Heart Association, Inc</publisher><subject>Adipose Tissue - blood supply ; Amnion - transplantation ; Animals ; Atherosclerosis (general aspects, experimental research) ; Biological and medical sciences ; Blood and lymphatic vessels ; Blood vessels and receptors ; Blotting, Western ; Cardiology. Vascular system ; Cell Movement ; Cells, Cultured ; Disease Models, Animal ; Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Endothelial Cells - transplantation ; Fundamental and applied biological sciences. Psychology ; Hindlimb ; Humans ; Ischemia - physiopathology ; Ischemia - surgery ; Lysophospholipids - metabolism ; Male ; Medical sciences ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Microvessels - cytology ; Microvessels - drug effects ; Microvessels - metabolism ; Microvessels - transplantation ; Muscle, Skeletal - blood supply ; Neovascularization, Physiologic - drug effects ; Omentum - blood supply ; Protein Kinase Inhibitors - pharmacology ; Receptors, Lysosphingolipid - genetics ; Receptors, Lysosphingolipid - metabolism ; Regional Blood Flow ; Reverse Transcriptase Polymerase Chain Reaction ; rho GTP-Binding Proteins - metabolism ; rho-Associated Kinases - antagonists &amp; inhibitors ; rho-Associated Kinases - metabolism ; Signal Transduction ; Sphingosine - analogs &amp; derivatives ; Sphingosine - metabolism ; Tissue Engineering - methods ; Tissue Scaffolds ; Transplantation, Autologous ; Vertebrates: cardiovascular system</subject><ispartof>Arteriosclerosis, thrombosis, and vascular biology, 2010-07, Vol.30 (7), p.1300-1306</ispartof><rights>2010 American Heart Association, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4875-c6fdf69e3d7101d4c9078e3295581a5de87077b21132cbbc61f60f9b7d54fb293</citedby><cites>FETCH-LOGICAL-c4875-c6fdf69e3d7101d4c9078e3295581a5de87077b21132cbbc61f60f9b7d54fb293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22919650$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20431071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshida, Tomoko</creatorcontrib><creatorcontrib>Komaki, Motohiro</creatorcontrib><creatorcontrib>Hattori, Hideshi</creatorcontrib><creatorcontrib>Negishi, Jun</creatorcontrib><creatorcontrib>Kishida, Akio</creatorcontrib><creatorcontrib>Morita, Ikuo</creatorcontrib><creatorcontrib>Abe, Mayumi</creatorcontrib><title>Therapeutic Angiogenesis by Implantation of a Capillary Structure Constituted of Human Adipose Tissue Microvascular Endothelial Cells</title><title>Arteriosclerosis, thrombosis, and vascular biology</title><addtitle>Arterioscler Thromb Vasc Biol</addtitle><description>OBJECTIVE—We previously reported a novel technology for the engineering of a capillary network using an optical lithographic technique. To apply this technology to the therapy of ischemic diseases, we tested human omental microvascular endothelial cells (HOMECs) as an autologous cell source and decellularized human amniotic membranes (DC-AMs) as a pathogen-free and low immunogenic transplantation scaffold. METHODS AND RESULTS—Human umbilical vein endothelial cells were aligned on a patterned glass substrate and formed a capillary structure when transferred onto an amniotic membrane (AM). In contrast, HOMECs were scattered and did not form a capillary structure on AMs. Treatment of HOMECs with sphingosine 1-phosphate (S1P) inhibited HOMEC migration and enabled HOMEC formation of a capillary structure on AMs. Using quantitative RT-PCR and Western blot analyses, we demonstrated that the main S1P receptor in HOMECs is S1P2, which is lacking in human umbilical vein endothelial cells, and that inhibition of cell migration by S1P is mediated through an S1P2–Rho–Rho-associated kinase signaling pathway. Implantation of capillaries engineered on DC-AMs into a hindlimb ischemic nude mouse model significantly increased blood perfusion compared with controls. CONCLUSION—A capillary network consisting of HOMECs on DC-AMs can be engineered ex vivo using printing technology and S1P treatment. This method for regeneration of a capillary network may have therapeutic potential for ischemic diseases.</description><subject>Adipose Tissue - blood supply</subject><subject>Amnion - transplantation</subject><subject>Animals</subject><subject>Atherosclerosis (general aspects, experimental research)</subject><subject>Biological and medical sciences</subject><subject>Blood and lymphatic vessels</subject><subject>Blood vessels and receptors</subject><subject>Blotting, Western</subject><subject>Cardiology. Vascular system</subject><subject>Cell Movement</subject><subject>Cells, Cultured</subject><subject>Disease Models, Animal</subject><subject>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - transplantation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hindlimb</subject><subject>Humans</subject><subject>Ischemia - physiopathology</subject><subject>Ischemia - surgery</subject><subject>Lysophospholipids - metabolism</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Microvessels - cytology</subject><subject>Microvessels - drug effects</subject><subject>Microvessels - metabolism</subject><subject>Microvessels - transplantation</subject><subject>Muscle, Skeletal - blood supply</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Omentum - blood supply</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Receptors, Lysosphingolipid - genetics</subject><subject>Receptors, Lysosphingolipid - metabolism</subject><subject>Regional Blood Flow</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>rho GTP-Binding Proteins - metabolism</subject><subject>rho-Associated Kinases - antagonists &amp; inhibitors</subject><subject>rho-Associated Kinases - metabolism</subject><subject>Signal Transduction</subject><subject>Sphingosine - analogs &amp; derivatives</subject><subject>Sphingosine - metabolism</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>Transplantation, Autologous</subject><subject>Vertebrates: cardiovascular system</subject><issn>1079-5642</issn><issn>1524-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkctu1DAUhiMEoqXwAiyQN4hVBt8TL0NUmEpFLBjYRo5z0jF44uBLqz4A741HM8DCso_8_UfHn6vqNcEbQiR53-2-f-i23YZgtSGqVYo_qS6JoLzmksmn5YwbVQvJ6UX1IsYfGGNOKX5eXVDMWbkkl9Xv3R6CXiEna1C33Fl_BwtEG9H4iG4Oq9NL0sn6BfkZadTr1TqnwyP6mkI2KQdAvV9isiknmI7QNh_0grrJrj4C2tkYM6DP1gR_r6PJJYyul8mnPTirHerBufiyejZrF-HVeb-qvn283vXb-vbLp5u-u60NbxtRGzlPs1TApoZgMnGjcNMCo0qIlmgxQdvgphkpIYyacTSSzBLPamwmweeRKnZVvTv1XYP_lSGm4WCjKRPoBXyOQ8MYExTLtpD0RJa5YwwwD2uwh_LwgeDhaH842y-1Gk72S-jNuX0eDzD9i_zVXYC3Z6Co0G4OejE2_ueoIkoKXDh-4h68SxDiT5cfIAx70C7th-M_MolFTTHBuCllXRYW7A_Enp8F</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Yoshida, Tomoko</creator><creator>Komaki, Motohiro</creator><creator>Hattori, Hideshi</creator><creator>Negishi, Jun</creator><creator>Kishida, Akio</creator><creator>Morita, Ikuo</creator><creator>Abe, Mayumi</creator><general>American Heart Association, Inc</general><general>Lippincott Williams &amp; Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201007</creationdate><title>Therapeutic Angiogenesis by Implantation of a Capillary Structure Constituted of Human Adipose Tissue Microvascular Endothelial Cells</title><author>Yoshida, Tomoko ; Komaki, Motohiro ; Hattori, Hideshi ; Negishi, Jun ; Kishida, Akio ; Morita, Ikuo ; Abe, Mayumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4875-c6fdf69e3d7101d4c9078e3295581a5de87077b21132cbbc61f60f9b7d54fb293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adipose Tissue - blood supply</topic><topic>Amnion - transplantation</topic><topic>Animals</topic><topic>Atherosclerosis (general aspects, experimental research)</topic><topic>Biological and medical sciences</topic><topic>Blood and lymphatic vessels</topic><topic>Blood vessels and receptors</topic><topic>Blotting, Western</topic><topic>Cardiology. Vascular system</topic><topic>Cell Movement</topic><topic>Cells, Cultured</topic><topic>Disease Models, Animal</topic><topic>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - transplantation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hindlimb</topic><topic>Humans</topic><topic>Ischemia - physiopathology</topic><topic>Ischemia - surgery</topic><topic>Lysophospholipids - metabolism</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Microvessels - cytology</topic><topic>Microvessels - drug effects</topic><topic>Microvessels - metabolism</topic><topic>Microvessels - transplantation</topic><topic>Muscle, Skeletal - blood supply</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Omentum - blood supply</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Receptors, Lysosphingolipid - genetics</topic><topic>Receptors, Lysosphingolipid - metabolism</topic><topic>Regional Blood Flow</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>rho GTP-Binding Proteins - metabolism</topic><topic>rho-Associated Kinases - antagonists &amp; inhibitors</topic><topic>rho-Associated Kinases - metabolism</topic><topic>Signal Transduction</topic><topic>Sphingosine - analogs &amp; derivatives</topic><topic>Sphingosine - metabolism</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>Transplantation, Autologous</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, Tomoko</creatorcontrib><creatorcontrib>Komaki, Motohiro</creatorcontrib><creatorcontrib>Hattori, Hideshi</creatorcontrib><creatorcontrib>Negishi, Jun</creatorcontrib><creatorcontrib>Kishida, Akio</creatorcontrib><creatorcontrib>Morita, Ikuo</creatorcontrib><creatorcontrib>Abe, Mayumi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshida, Tomoko</au><au>Komaki, Motohiro</au><au>Hattori, Hideshi</au><au>Negishi, Jun</au><au>Kishida, Akio</au><au>Morita, Ikuo</au><au>Abe, Mayumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Therapeutic Angiogenesis by Implantation of a Capillary Structure Constituted of Human Adipose Tissue Microvascular Endothelial Cells</atitle><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle><addtitle>Arterioscler Thromb Vasc Biol</addtitle><date>2010-07</date><risdate>2010</risdate><volume>30</volume><issue>7</issue><spage>1300</spage><epage>1306</epage><pages>1300-1306</pages><issn>1079-5642</issn><eissn>1524-4636</eissn><coden>ATVBFA</coden><abstract>OBJECTIVE—We previously reported a novel technology for the engineering of a capillary network using an optical lithographic technique. To apply this technology to the therapy of ischemic diseases, we tested human omental microvascular endothelial cells (HOMECs) as an autologous cell source and decellularized human amniotic membranes (DC-AMs) as a pathogen-free and low immunogenic transplantation scaffold. METHODS AND RESULTS—Human umbilical vein endothelial cells were aligned on a patterned glass substrate and formed a capillary structure when transferred onto an amniotic membrane (AM). In contrast, HOMECs were scattered and did not form a capillary structure on AMs. Treatment of HOMECs with sphingosine 1-phosphate (S1P) inhibited HOMEC migration and enabled HOMEC formation of a capillary structure on AMs. Using quantitative RT-PCR and Western blot analyses, we demonstrated that the main S1P receptor in HOMECs is S1P2, which is lacking in human umbilical vein endothelial cells, and that inhibition of cell migration by S1P is mediated through an S1P2–Rho–Rho-associated kinase signaling pathway. Implantation of capillaries engineered on DC-AMs into a hindlimb ischemic nude mouse model significantly increased blood perfusion compared with controls. CONCLUSION—A capillary network consisting of HOMECs on DC-AMs can be engineered ex vivo using printing technology and S1P treatment. This method for regeneration of a capillary network may have therapeutic potential for ischemic diseases.</abstract><cop>Philadelphia, PA</cop><pub>American Heart Association, Inc</pub><pmid>20431071</pmid><doi>10.1161/ATVBAHA.109.198994</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1079-5642
ispartof Arteriosclerosis, thrombosis, and vascular biology, 2010-07, Vol.30 (7), p.1300-1306
issn 1079-5642
1524-4636
language eng
recordid cdi_proquest_miscellaneous_733352068
source MEDLINE; Journals@Ovid Complete; Alma/SFX Local Collection
subjects Adipose Tissue - blood supply
Amnion - transplantation
Animals
Atherosclerosis (general aspects, experimental research)
Biological and medical sciences
Blood and lymphatic vessels
Blood vessels and receptors
Blotting, Western
Cardiology. Vascular system
Cell Movement
Cells, Cultured
Disease Models, Animal
Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous
Endothelial Cells - drug effects
Endothelial Cells - metabolism
Endothelial Cells - transplantation
Fundamental and applied biological sciences. Psychology
Hindlimb
Humans
Ischemia - physiopathology
Ischemia - surgery
Lysophospholipids - metabolism
Male
Medical sciences
Mice
Mice, Inbred BALB C
Mice, Nude
Microvessels - cytology
Microvessels - drug effects
Microvessels - metabolism
Microvessels - transplantation
Muscle, Skeletal - blood supply
Neovascularization, Physiologic - drug effects
Omentum - blood supply
Protein Kinase Inhibitors - pharmacology
Receptors, Lysosphingolipid - genetics
Receptors, Lysosphingolipid - metabolism
Regional Blood Flow
Reverse Transcriptase Polymerase Chain Reaction
rho GTP-Binding Proteins - metabolism
rho-Associated Kinases - antagonists & inhibitors
rho-Associated Kinases - metabolism
Signal Transduction
Sphingosine - analogs & derivatives
Sphingosine - metabolism
Tissue Engineering - methods
Tissue Scaffolds
Transplantation, Autologous
Vertebrates: cardiovascular system
title Therapeutic Angiogenesis by Implantation of a Capillary Structure Constituted of Human Adipose Tissue Microvascular Endothelial Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Therapeutic%20Angiogenesis%20by%20Implantation%20of%20a%20Capillary%20Structure%20Constituted%20of%20Human%20Adipose%20Tissue%20Microvascular%20Endothelial%20Cells&rft.jtitle=Arteriosclerosis,%20thrombosis,%20and%20vascular%20biology&rft.au=Yoshida,%20Tomoko&rft.date=2010-07&rft.volume=30&rft.issue=7&rft.spage=1300&rft.epage=1306&rft.pages=1300-1306&rft.issn=1079-5642&rft.eissn=1524-4636&rft.coden=ATVBFA&rft_id=info:doi/10.1161/ATVBAHA.109.198994&rft_dat=%3Cproquest_cross%3E733352068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733352068&rft_id=info:pmid/20431071&rfr_iscdi=true