Therapeutic Angiogenesis by Implantation of a Capillary Structure Constituted of Human Adipose Tissue Microvascular Endothelial Cells
OBJECTIVE—We previously reported a novel technology for the engineering of a capillary network using an optical lithographic technique. To apply this technology to the therapy of ischemic diseases, we tested human omental microvascular endothelial cells (HOMECs) as an autologous cell source and dece...
Gespeichert in:
Veröffentlicht in: | Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2010-07, Vol.30 (7), p.1300-1306 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1306 |
---|---|
container_issue | 7 |
container_start_page | 1300 |
container_title | Arteriosclerosis, thrombosis, and vascular biology |
container_volume | 30 |
creator | Yoshida, Tomoko Komaki, Motohiro Hattori, Hideshi Negishi, Jun Kishida, Akio Morita, Ikuo Abe, Mayumi |
description | OBJECTIVE—We previously reported a novel technology for the engineering of a capillary network using an optical lithographic technique. To apply this technology to the therapy of ischemic diseases, we tested human omental microvascular endothelial cells (HOMECs) as an autologous cell source and decellularized human amniotic membranes (DC-AMs) as a pathogen-free and low immunogenic transplantation scaffold.
METHODS AND RESULTS—Human umbilical vein endothelial cells were aligned on a patterned glass substrate and formed a capillary structure when transferred onto an amniotic membrane (AM). In contrast, HOMECs were scattered and did not form a capillary structure on AMs. Treatment of HOMECs with sphingosine 1-phosphate (S1P) inhibited HOMEC migration and enabled HOMEC formation of a capillary structure on AMs. Using quantitative RT-PCR and Western blot analyses, we demonstrated that the main S1P receptor in HOMECs is S1P2, which is lacking in human umbilical vein endothelial cells, and that inhibition of cell migration by S1P is mediated through an S1P2–Rho–Rho-associated kinase signaling pathway. Implantation of capillaries engineered on DC-AMs into a hindlimb ischemic nude mouse model significantly increased blood perfusion compared with controls.
CONCLUSION—A capillary network consisting of HOMECs on DC-AMs can be engineered ex vivo using printing technology and S1P treatment. This method for regeneration of a capillary network may have therapeutic potential for ischemic diseases. |
doi_str_mv | 10.1161/ATVBAHA.109.198994 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733352068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733352068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4875-c6fdf69e3d7101d4c9078e3295581a5de87077b21132cbbc61f60f9b7d54fb293</originalsourceid><addsrcrecordid>eNpFkctu1DAUhiMEoqXwAiyQN4hVBt8TL0NUmEpFLBjYRo5z0jF44uBLqz4A741HM8DCso_8_UfHn6vqNcEbQiR53-2-f-i23YZgtSGqVYo_qS6JoLzmksmn5YwbVQvJ6UX1IsYfGGNOKX5eXVDMWbkkl9Xv3R6CXiEna1C33Fl_BwtEG9H4iG4Oq9NL0sn6BfkZadTr1TqnwyP6mkI2KQdAvV9isiknmI7QNh_0grrJrj4C2tkYM6DP1gR_r6PJJYyul8mnPTirHerBufiyejZrF-HVeb-qvn283vXb-vbLp5u-u60NbxtRGzlPs1TApoZgMnGjcNMCo0qIlmgxQdvgphkpIYyacTSSzBLPamwmweeRKnZVvTv1XYP_lSGm4WCjKRPoBXyOQ8MYExTLtpD0RJa5YwwwD2uwh_LwgeDhaH842y-1Gk72S-jNuX0eDzD9i_zVXYC3Z6Co0G4OejE2_ueoIkoKXDh-4h68SxDiT5cfIAx70C7th-M_MolFTTHBuCllXRYW7A_Enp8F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733352068</pqid></control><display><type>article</type><title>Therapeutic Angiogenesis by Implantation of a Capillary Structure Constituted of Human Adipose Tissue Microvascular Endothelial Cells</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>Alma/SFX Local Collection</source><creator>Yoshida, Tomoko ; Komaki, Motohiro ; Hattori, Hideshi ; Negishi, Jun ; Kishida, Akio ; Morita, Ikuo ; Abe, Mayumi</creator><creatorcontrib>Yoshida, Tomoko ; Komaki, Motohiro ; Hattori, Hideshi ; Negishi, Jun ; Kishida, Akio ; Morita, Ikuo ; Abe, Mayumi</creatorcontrib><description>OBJECTIVE—We previously reported a novel technology for the engineering of a capillary network using an optical lithographic technique. To apply this technology to the therapy of ischemic diseases, we tested human omental microvascular endothelial cells (HOMECs) as an autologous cell source and decellularized human amniotic membranes (DC-AMs) as a pathogen-free and low immunogenic transplantation scaffold.
METHODS AND RESULTS—Human umbilical vein endothelial cells were aligned on a patterned glass substrate and formed a capillary structure when transferred onto an amniotic membrane (AM). In contrast, HOMECs were scattered and did not form a capillary structure on AMs. Treatment of HOMECs with sphingosine 1-phosphate (S1P) inhibited HOMEC migration and enabled HOMEC formation of a capillary structure on AMs. Using quantitative RT-PCR and Western blot analyses, we demonstrated that the main S1P receptor in HOMECs is S1P2, which is lacking in human umbilical vein endothelial cells, and that inhibition of cell migration by S1P is mediated through an S1P2–Rho–Rho-associated kinase signaling pathway. Implantation of capillaries engineered on DC-AMs into a hindlimb ischemic nude mouse model significantly increased blood perfusion compared with controls.
CONCLUSION—A capillary network consisting of HOMECs on DC-AMs can be engineered ex vivo using printing technology and S1P treatment. This method for regeneration of a capillary network may have therapeutic potential for ischemic diseases.</description><identifier>ISSN: 1079-5642</identifier><identifier>EISSN: 1524-4636</identifier><identifier>DOI: 10.1161/ATVBAHA.109.198994</identifier><identifier>PMID: 20431071</identifier><identifier>CODEN: ATVBFA</identifier><language>eng</language><publisher>Philadelphia, PA: American Heart Association, Inc</publisher><subject>Adipose Tissue - blood supply ; Amnion - transplantation ; Animals ; Atherosclerosis (general aspects, experimental research) ; Biological and medical sciences ; Blood and lymphatic vessels ; Blood vessels and receptors ; Blotting, Western ; Cardiology. Vascular system ; Cell Movement ; Cells, Cultured ; Disease Models, Animal ; Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous ; Endothelial Cells - drug effects ; Endothelial Cells - metabolism ; Endothelial Cells - transplantation ; Fundamental and applied biological sciences. Psychology ; Hindlimb ; Humans ; Ischemia - physiopathology ; Ischemia - surgery ; Lysophospholipids - metabolism ; Male ; Medical sciences ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; Microvessels - cytology ; Microvessels - drug effects ; Microvessels - metabolism ; Microvessels - transplantation ; Muscle, Skeletal - blood supply ; Neovascularization, Physiologic - drug effects ; Omentum - blood supply ; Protein Kinase Inhibitors - pharmacology ; Receptors, Lysosphingolipid - genetics ; Receptors, Lysosphingolipid - metabolism ; Regional Blood Flow ; Reverse Transcriptase Polymerase Chain Reaction ; rho GTP-Binding Proteins - metabolism ; rho-Associated Kinases - antagonists & inhibitors ; rho-Associated Kinases - metabolism ; Signal Transduction ; Sphingosine - analogs & derivatives ; Sphingosine - metabolism ; Tissue Engineering - methods ; Tissue Scaffolds ; Transplantation, Autologous ; Vertebrates: cardiovascular system</subject><ispartof>Arteriosclerosis, thrombosis, and vascular biology, 2010-07, Vol.30 (7), p.1300-1306</ispartof><rights>2010 American Heart Association, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4875-c6fdf69e3d7101d4c9078e3295581a5de87077b21132cbbc61f60f9b7d54fb293</citedby><cites>FETCH-LOGICAL-c4875-c6fdf69e3d7101d4c9078e3295581a5de87077b21132cbbc61f60f9b7d54fb293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22919650$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20431071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yoshida, Tomoko</creatorcontrib><creatorcontrib>Komaki, Motohiro</creatorcontrib><creatorcontrib>Hattori, Hideshi</creatorcontrib><creatorcontrib>Negishi, Jun</creatorcontrib><creatorcontrib>Kishida, Akio</creatorcontrib><creatorcontrib>Morita, Ikuo</creatorcontrib><creatorcontrib>Abe, Mayumi</creatorcontrib><title>Therapeutic Angiogenesis by Implantation of a Capillary Structure Constituted of Human Adipose Tissue Microvascular Endothelial Cells</title><title>Arteriosclerosis, thrombosis, and vascular biology</title><addtitle>Arterioscler Thromb Vasc Biol</addtitle><description>OBJECTIVE—We previously reported a novel technology for the engineering of a capillary network using an optical lithographic technique. To apply this technology to the therapy of ischemic diseases, we tested human omental microvascular endothelial cells (HOMECs) as an autologous cell source and decellularized human amniotic membranes (DC-AMs) as a pathogen-free and low immunogenic transplantation scaffold.
METHODS AND RESULTS—Human umbilical vein endothelial cells were aligned on a patterned glass substrate and formed a capillary structure when transferred onto an amniotic membrane (AM). In contrast, HOMECs were scattered and did not form a capillary structure on AMs. Treatment of HOMECs with sphingosine 1-phosphate (S1P) inhibited HOMEC migration and enabled HOMEC formation of a capillary structure on AMs. Using quantitative RT-PCR and Western blot analyses, we demonstrated that the main S1P receptor in HOMECs is S1P2, which is lacking in human umbilical vein endothelial cells, and that inhibition of cell migration by S1P is mediated through an S1P2–Rho–Rho-associated kinase signaling pathway. Implantation of capillaries engineered on DC-AMs into a hindlimb ischemic nude mouse model significantly increased blood perfusion compared with controls.
CONCLUSION—A capillary network consisting of HOMECs on DC-AMs can be engineered ex vivo using printing technology and S1P treatment. This method for regeneration of a capillary network may have therapeutic potential for ischemic diseases.</description><subject>Adipose Tissue - blood supply</subject><subject>Amnion - transplantation</subject><subject>Animals</subject><subject>Atherosclerosis (general aspects, experimental research)</subject><subject>Biological and medical sciences</subject><subject>Blood and lymphatic vessels</subject><subject>Blood vessels and receptors</subject><subject>Blotting, Western</subject><subject>Cardiology. Vascular system</subject><subject>Cell Movement</subject><subject>Cells, Cultured</subject><subject>Disease Models, Animal</subject><subject>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</subject><subject>Endothelial Cells - drug effects</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - transplantation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hindlimb</subject><subject>Humans</subject><subject>Ischemia - physiopathology</subject><subject>Ischemia - surgery</subject><subject>Lysophospholipids - metabolism</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>Microvessels - cytology</subject><subject>Microvessels - drug effects</subject><subject>Microvessels - metabolism</subject><subject>Microvessels - transplantation</subject><subject>Muscle, Skeletal - blood supply</subject><subject>Neovascularization, Physiologic - drug effects</subject><subject>Omentum - blood supply</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Receptors, Lysosphingolipid - genetics</subject><subject>Receptors, Lysosphingolipid - metabolism</subject><subject>Regional Blood Flow</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>rho GTP-Binding Proteins - metabolism</subject><subject>rho-Associated Kinases - antagonists & inhibitors</subject><subject>rho-Associated Kinases - metabolism</subject><subject>Signal Transduction</subject><subject>Sphingosine - analogs & derivatives</subject><subject>Sphingosine - metabolism</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><subject>Transplantation, Autologous</subject><subject>Vertebrates: cardiovascular system</subject><issn>1079-5642</issn><issn>1524-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkctu1DAUhiMEoqXwAiyQN4hVBt8TL0NUmEpFLBjYRo5z0jF44uBLqz4A741HM8DCso_8_UfHn6vqNcEbQiR53-2-f-i23YZgtSGqVYo_qS6JoLzmksmn5YwbVQvJ6UX1IsYfGGNOKX5eXVDMWbkkl9Xv3R6CXiEna1C33Fl_BwtEG9H4iG4Oq9NL0sn6BfkZadTr1TqnwyP6mkI2KQdAvV9isiknmI7QNh_0grrJrj4C2tkYM6DP1gR_r6PJJYyul8mnPTirHerBufiyejZrF-HVeb-qvn283vXb-vbLp5u-u60NbxtRGzlPs1TApoZgMnGjcNMCo0qIlmgxQdvgphkpIYyacTSSzBLPamwmweeRKnZVvTv1XYP_lSGm4WCjKRPoBXyOQ8MYExTLtpD0RJa5YwwwD2uwh_LwgeDhaH842y-1Gk72S-jNuX0eDzD9i_zVXYC3Z6Co0G4OejE2_ueoIkoKXDh-4h68SxDiT5cfIAx70C7th-M_MolFTTHBuCllXRYW7A_Enp8F</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Yoshida, Tomoko</creator><creator>Komaki, Motohiro</creator><creator>Hattori, Hideshi</creator><creator>Negishi, Jun</creator><creator>Kishida, Akio</creator><creator>Morita, Ikuo</creator><creator>Abe, Mayumi</creator><general>American Heart Association, Inc</general><general>Lippincott Williams & Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201007</creationdate><title>Therapeutic Angiogenesis by Implantation of a Capillary Structure Constituted of Human Adipose Tissue Microvascular Endothelial Cells</title><author>Yoshida, Tomoko ; Komaki, Motohiro ; Hattori, Hideshi ; Negishi, Jun ; Kishida, Akio ; Morita, Ikuo ; Abe, Mayumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4875-c6fdf69e3d7101d4c9078e3295581a5de87077b21132cbbc61f60f9b7d54fb293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adipose Tissue - blood supply</topic><topic>Amnion - transplantation</topic><topic>Animals</topic><topic>Atherosclerosis (general aspects, experimental research)</topic><topic>Biological and medical sciences</topic><topic>Blood and lymphatic vessels</topic><topic>Blood vessels and receptors</topic><topic>Blotting, Western</topic><topic>Cardiology. Vascular system</topic><topic>Cell Movement</topic><topic>Cells, Cultured</topic><topic>Disease Models, Animal</topic><topic>Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous</topic><topic>Endothelial Cells - drug effects</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - transplantation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hindlimb</topic><topic>Humans</topic><topic>Ischemia - physiopathology</topic><topic>Ischemia - surgery</topic><topic>Lysophospholipids - metabolism</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>Microvessels - cytology</topic><topic>Microvessels - drug effects</topic><topic>Microvessels - metabolism</topic><topic>Microvessels - transplantation</topic><topic>Muscle, Skeletal - blood supply</topic><topic>Neovascularization, Physiologic - drug effects</topic><topic>Omentum - blood supply</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Receptors, Lysosphingolipid - genetics</topic><topic>Receptors, Lysosphingolipid - metabolism</topic><topic>Regional Blood Flow</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>rho GTP-Binding Proteins - metabolism</topic><topic>rho-Associated Kinases - antagonists & inhibitors</topic><topic>rho-Associated Kinases - metabolism</topic><topic>Signal Transduction</topic><topic>Sphingosine - analogs & derivatives</topic><topic>Sphingosine - metabolism</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><topic>Transplantation, Autologous</topic><topic>Vertebrates: cardiovascular system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoshida, Tomoko</creatorcontrib><creatorcontrib>Komaki, Motohiro</creatorcontrib><creatorcontrib>Hattori, Hideshi</creatorcontrib><creatorcontrib>Negishi, Jun</creatorcontrib><creatorcontrib>Kishida, Akio</creatorcontrib><creatorcontrib>Morita, Ikuo</creatorcontrib><creatorcontrib>Abe, Mayumi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoshida, Tomoko</au><au>Komaki, Motohiro</au><au>Hattori, Hideshi</au><au>Negishi, Jun</au><au>Kishida, Akio</au><au>Morita, Ikuo</au><au>Abe, Mayumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Therapeutic Angiogenesis by Implantation of a Capillary Structure Constituted of Human Adipose Tissue Microvascular Endothelial Cells</atitle><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle><addtitle>Arterioscler Thromb Vasc Biol</addtitle><date>2010-07</date><risdate>2010</risdate><volume>30</volume><issue>7</issue><spage>1300</spage><epage>1306</epage><pages>1300-1306</pages><issn>1079-5642</issn><eissn>1524-4636</eissn><coden>ATVBFA</coden><abstract>OBJECTIVE—We previously reported a novel technology for the engineering of a capillary network using an optical lithographic technique. To apply this technology to the therapy of ischemic diseases, we tested human omental microvascular endothelial cells (HOMECs) as an autologous cell source and decellularized human amniotic membranes (DC-AMs) as a pathogen-free and low immunogenic transplantation scaffold.
METHODS AND RESULTS—Human umbilical vein endothelial cells were aligned on a patterned glass substrate and formed a capillary structure when transferred onto an amniotic membrane (AM). In contrast, HOMECs were scattered and did not form a capillary structure on AMs. Treatment of HOMECs with sphingosine 1-phosphate (S1P) inhibited HOMEC migration and enabled HOMEC formation of a capillary structure on AMs. Using quantitative RT-PCR and Western blot analyses, we demonstrated that the main S1P receptor in HOMECs is S1P2, which is lacking in human umbilical vein endothelial cells, and that inhibition of cell migration by S1P is mediated through an S1P2–Rho–Rho-associated kinase signaling pathway. Implantation of capillaries engineered on DC-AMs into a hindlimb ischemic nude mouse model significantly increased blood perfusion compared with controls.
CONCLUSION—A capillary network consisting of HOMECs on DC-AMs can be engineered ex vivo using printing technology and S1P treatment. This method for regeneration of a capillary network may have therapeutic potential for ischemic diseases.</abstract><cop>Philadelphia, PA</cop><pub>American Heart Association, Inc</pub><pmid>20431071</pmid><doi>10.1161/ATVBAHA.109.198994</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-5642 |
ispartof | Arteriosclerosis, thrombosis, and vascular biology, 2010-07, Vol.30 (7), p.1300-1306 |
issn | 1079-5642 1524-4636 |
language | eng |
recordid | cdi_proquest_miscellaneous_733352068 |
source | MEDLINE; Journals@Ovid Complete; Alma/SFX Local Collection |
subjects | Adipose Tissue - blood supply Amnion - transplantation Animals Atherosclerosis (general aspects, experimental research) Biological and medical sciences Blood and lymphatic vessels Blood vessels and receptors Blotting, Western Cardiology. Vascular system Cell Movement Cells, Cultured Disease Models, Animal Diseases of the peripheral vessels. Diseases of the vena cava. Miscellaneous Endothelial Cells - drug effects Endothelial Cells - metabolism Endothelial Cells - transplantation Fundamental and applied biological sciences. Psychology Hindlimb Humans Ischemia - physiopathology Ischemia - surgery Lysophospholipids - metabolism Male Medical sciences Mice Mice, Inbred BALB C Mice, Nude Microvessels - cytology Microvessels - drug effects Microvessels - metabolism Microvessels - transplantation Muscle, Skeletal - blood supply Neovascularization, Physiologic - drug effects Omentum - blood supply Protein Kinase Inhibitors - pharmacology Receptors, Lysosphingolipid - genetics Receptors, Lysosphingolipid - metabolism Regional Blood Flow Reverse Transcriptase Polymerase Chain Reaction rho GTP-Binding Proteins - metabolism rho-Associated Kinases - antagonists & inhibitors rho-Associated Kinases - metabolism Signal Transduction Sphingosine - analogs & derivatives Sphingosine - metabolism Tissue Engineering - methods Tissue Scaffolds Transplantation, Autologous Vertebrates: cardiovascular system |
title | Therapeutic Angiogenesis by Implantation of a Capillary Structure Constituted of Human Adipose Tissue Microvascular Endothelial Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A55%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Therapeutic%20Angiogenesis%20by%20Implantation%20of%20a%20Capillary%20Structure%20Constituted%20of%20Human%20Adipose%20Tissue%20Microvascular%20Endothelial%20Cells&rft.jtitle=Arteriosclerosis,%20thrombosis,%20and%20vascular%20biology&rft.au=Yoshida,%20Tomoko&rft.date=2010-07&rft.volume=30&rft.issue=7&rft.spage=1300&rft.epage=1306&rft.pages=1300-1306&rft.issn=1079-5642&rft.eissn=1524-4636&rft.coden=ATVBFA&rft_id=info:doi/10.1161/ATVBAHA.109.198994&rft_dat=%3Cproquest_cross%3E733352068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733352068&rft_id=info:pmid/20431071&rfr_iscdi=true |