Optimal maximum correlation filter for arbitrarily constrained devices
Almost all coherent pattern recognition architectures are based on optical correlation of the input with a designed filter. However, the filter can be implemented via many different media, and each medium will impose different realizability constraints on the filter. That is, different media will ha...
Gespeichert in:
Veröffentlicht in: | Applied Optics 1989-08, Vol.28 (16), p.3362-3366 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3366 |
---|---|
container_issue | 16 |
container_start_page | 3362 |
container_title | Applied Optics |
container_volume | 28 |
creator | FARN, M. W GOODMAN, J. W |
description | Almost all coherent pattern recognition architectures are based on optical correlation of the input with a designed filter. However, the filter can be implemented via many different media, and each medium will impose different realizability constraints on the filter. That is, different media will have different regions of physical realizability. In the past, there has not been much work addressing the problem of designing an optimal filter given an arbitrary region of realizability. This paper presents the theory for just such an optimal filter design. A fast algorithm is presented to implement the theory. The algorithm is demonstrated with two examples. |
doi_str_mv | 10.1364/AO.28.003362 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733351292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733351292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-61d80fc5915ca2dc8bb596105beb4a6a1997a7478ec816a198e3bb6231ff9bbf3</originalsourceid><addsrcrecordid>eNo90E1LwzAYB_AgipvTm2fpQfBiZ16aNDmO4RsMetFzSNIEImk7k1bctzdjc6fnhR8PPH8AbhFcIsKqp1WzxHwJISEMn4E5okSUFcX4HMxh3pZMEDoDVyl9QYgwZ-ISzDCklNaQzcFLsx19p0LRqV_fTV1hhhhtUKMf-sL5MNpYuCEWKmo_RhV92GXSp9z73rZFa3-8sekaXDgVkr051gX4fHn-WL-Vm-b1fb3alIYgMZYMtRw6QwWiRuHWcK2pYAhSbXWlmEJC1Kquam4NR_uRW6I1wwQ5J7R2ZAEeDne3cfiebBpl55OxIajeDlOSNSGEIixwlo8HaeKQUrRObmN-NO4kgnIfnFw1EnN5CC7zu-PhSXe2PeH_pDK4PwKVjAouqt74dHKMIVwRSv4AZTd1yA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733351292</pqid></control><display><type>article</type><title>Optimal maximum correlation filter for arbitrarily constrained devices</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>FARN, M. W ; GOODMAN, J. W</creator><creatorcontrib>FARN, M. W ; GOODMAN, J. W</creatorcontrib><description>Almost all coherent pattern recognition architectures are based on optical correlation of the input with a designed filter. However, the filter can be implemented via many different media, and each medium will impose different realizability constraints on the filter. That is, different media will have different regions of physical realizability. In the past, there has not been much work addressing the problem of designing an optimal filter given an arbitrary region of realizability. This paper presents the theory for just such an optimal filter design. A fast algorithm is presented to implement the theory. The algorithm is demonstrated with two examples.</description><identifier>ISSN: 0003-6935</identifier><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.28.003362</identifier><identifier>PMID: 20555706</identifier><identifier>CODEN: APOPAI</identifier><language>eng</language><publisher>Washington, DC: Optical Society of America</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Imaging and optical processing ; Optics ; Physics</subject><ispartof>Applied Optics, 1989-08, Vol.28 (16), p.3362-3366</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-61d80fc5915ca2dc8bb596105beb4a6a1997a7478ec816a198e3bb6231ff9bbf3</citedby><cites>FETCH-LOGICAL-c319t-61d80fc5915ca2dc8bb596105beb4a6a1997a7478ec816a198e3bb6231ff9bbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6612435$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20555706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>FARN, M. W</creatorcontrib><creatorcontrib>GOODMAN, J. W</creatorcontrib><title>Optimal maximum correlation filter for arbitrarily constrained devices</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>Almost all coherent pattern recognition architectures are based on optical correlation of the input with a designed filter. However, the filter can be implemented via many different media, and each medium will impose different realizability constraints on the filter. That is, different media will have different regions of physical realizability. In the past, there has not been much work addressing the problem of designing an optimal filter given an arbitrary region of realizability. This paper presents the theory for just such an optimal filter design. A fast algorithm is presented to implement the theory. The algorithm is demonstrated with two examples.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Imaging and optical processing</subject><subject>Optics</subject><subject>Physics</subject><issn>0003-6935</issn><issn>1559-128X</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNo90E1LwzAYB_AgipvTm2fpQfBiZ16aNDmO4RsMetFzSNIEImk7k1bctzdjc6fnhR8PPH8AbhFcIsKqp1WzxHwJISEMn4E5okSUFcX4HMxh3pZMEDoDVyl9QYgwZ-ISzDCklNaQzcFLsx19p0LRqV_fTV1hhhhtUKMf-sL5MNpYuCEWKmo_RhV92GXSp9z73rZFa3-8sekaXDgVkr051gX4fHn-WL-Vm-b1fb3alIYgMZYMtRw6QwWiRuHWcK2pYAhSbXWlmEJC1Kquam4NR_uRW6I1wwQ5J7R2ZAEeDne3cfiebBpl55OxIajeDlOSNSGEIixwlo8HaeKQUrRObmN-NO4kgnIfnFw1EnN5CC7zu-PhSXe2PeH_pDK4PwKVjAouqt74dHKMIVwRSv4AZTd1yA</recordid><startdate>19890815</startdate><enddate>19890815</enddate><creator>FARN, M. W</creator><creator>GOODMAN, J. W</creator><general>Optical Society of America</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19890815</creationdate><title>Optimal maximum correlation filter for arbitrarily constrained devices</title><author>FARN, M. W ; GOODMAN, J. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-61d80fc5915ca2dc8bb596105beb4a6a1997a7478ec816a198e3bb6231ff9bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Imaging and optical processing</topic><topic>Optics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FARN, M. W</creatorcontrib><creatorcontrib>GOODMAN, J. W</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FARN, M. W</au><au>GOODMAN, J. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal maximum correlation filter for arbitrarily constrained devices</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>1989-08-15</date><risdate>1989</risdate><volume>28</volume><issue>16</issue><spage>3362</spage><epage>3366</epage><pages>3362-3366</pages><issn>0003-6935</issn><issn>1559-128X</issn><eissn>1539-4522</eissn><coden>APOPAI</coden><abstract>Almost all coherent pattern recognition architectures are based on optical correlation of the input with a designed filter. However, the filter can be implemented via many different media, and each medium will impose different realizability constraints on the filter. That is, different media will have different regions of physical realizability. In the past, there has not been much work addressing the problem of designing an optimal filter given an arbitrary region of realizability. This paper presents the theory for just such an optimal filter design. A fast algorithm is presented to implement the theory. The algorithm is demonstrated with two examples.</abstract><cop>Washington, DC</cop><pub>Optical Society of America</pub><pmid>20555706</pmid><doi>10.1364/AO.28.003362</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6935 |
ispartof | Applied Optics, 1989-08, Vol.28 (16), p.3362-3366 |
issn | 0003-6935 1559-128X 1539-4522 |
language | eng |
recordid | cdi_proquest_miscellaneous_733351292 |
source | Alma/SFX Local Collection; Optica Publishing Group Journals |
subjects | Exact sciences and technology Fundamental areas of phenomenology (including applications) Imaging and optical processing Optics Physics |
title | Optimal maximum correlation filter for arbitrarily constrained devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A25%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20maximum%20correlation%20filter%20for%20arbitrarily%20constrained%20devices&rft.jtitle=Applied%20Optics&rft.au=FARN,%20M.%20W&rft.date=1989-08-15&rft.volume=28&rft.issue=16&rft.spage=3362&rft.epage=3366&rft.pages=3362-3366&rft.issn=0003-6935&rft.eissn=1539-4522&rft.coden=APOPAI&rft_id=info:doi/10.1364/AO.28.003362&rft_dat=%3Cproquest_cross%3E733351292%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733351292&rft_id=info:pmid/20555706&rfr_iscdi=true |