Optimal maximum correlation filter for arbitrarily constrained devices

Almost all coherent pattern recognition architectures are based on optical correlation of the input with a designed filter. However, the filter can be implemented via many different media, and each medium will impose different realizability constraints on the filter. That is, different media will ha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 1989-08, Vol.28 (16), p.3362-3366
Hauptverfasser: FARN, M. W, GOODMAN, J. W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3366
container_issue 16
container_start_page 3362
container_title Applied Optics
container_volume 28
creator FARN, M. W
GOODMAN, J. W
description Almost all coherent pattern recognition architectures are based on optical correlation of the input with a designed filter. However, the filter can be implemented via many different media, and each medium will impose different realizability constraints on the filter. That is, different media will have different regions of physical realizability. In the past, there has not been much work addressing the problem of designing an optimal filter given an arbitrary region of realizability. This paper presents the theory for just such an optimal filter design. A fast algorithm is presented to implement the theory. The algorithm is demonstrated with two examples.
doi_str_mv 10.1364/AO.28.003362
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733351292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733351292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-61d80fc5915ca2dc8bb596105beb4a6a1997a7478ec816a198e3bb6231ff9bbf3</originalsourceid><addsrcrecordid>eNo90E1LwzAYB_AgipvTm2fpQfBiZ16aNDmO4RsMetFzSNIEImk7k1bctzdjc6fnhR8PPH8AbhFcIsKqp1WzxHwJISEMn4E5okSUFcX4HMxh3pZMEDoDVyl9QYgwZ-ISzDCklNaQzcFLsx19p0LRqV_fTV1hhhhtUKMf-sL5MNpYuCEWKmo_RhV92GXSp9z73rZFa3-8sekaXDgVkr051gX4fHn-WL-Vm-b1fb3alIYgMZYMtRw6QwWiRuHWcK2pYAhSbXWlmEJC1Kquam4NR_uRW6I1wwQ5J7R2ZAEeDne3cfiebBpl55OxIajeDlOSNSGEIixwlo8HaeKQUrRObmN-NO4kgnIfnFw1EnN5CC7zu-PhSXe2PeH_pDK4PwKVjAouqt74dHKMIVwRSv4AZTd1yA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733351292</pqid></control><display><type>article</type><title>Optimal maximum correlation filter for arbitrarily constrained devices</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>FARN, M. W ; GOODMAN, J. W</creator><creatorcontrib>FARN, M. W ; GOODMAN, J. W</creatorcontrib><description>Almost all coherent pattern recognition architectures are based on optical correlation of the input with a designed filter. However, the filter can be implemented via many different media, and each medium will impose different realizability constraints on the filter. That is, different media will have different regions of physical realizability. In the past, there has not been much work addressing the problem of designing an optimal filter given an arbitrary region of realizability. This paper presents the theory for just such an optimal filter design. A fast algorithm is presented to implement the theory. The algorithm is demonstrated with two examples.</description><identifier>ISSN: 0003-6935</identifier><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.28.003362</identifier><identifier>PMID: 20555706</identifier><identifier>CODEN: APOPAI</identifier><language>eng</language><publisher>Washington, DC: Optical Society of America</publisher><subject>Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Imaging and optical processing ; Optics ; Physics</subject><ispartof>Applied Optics, 1989-08, Vol.28 (16), p.3362-3366</ispartof><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-61d80fc5915ca2dc8bb596105beb4a6a1997a7478ec816a198e3bb6231ff9bbf3</citedby><cites>FETCH-LOGICAL-c319t-61d80fc5915ca2dc8bb596105beb4a6a1997a7478ec816a198e3bb6231ff9bbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6612435$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20555706$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>FARN, M. W</creatorcontrib><creatorcontrib>GOODMAN, J. W</creatorcontrib><title>Optimal maximum correlation filter for arbitrarily constrained devices</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>Almost all coherent pattern recognition architectures are based on optical correlation of the input with a designed filter. However, the filter can be implemented via many different media, and each medium will impose different realizability constraints on the filter. That is, different media will have different regions of physical realizability. In the past, there has not been much work addressing the problem of designing an optimal filter given an arbitrary region of realizability. This paper presents the theory for just such an optimal filter design. A fast algorithm is presented to implement the theory. The algorithm is demonstrated with two examples.</description><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Imaging and optical processing</subject><subject>Optics</subject><subject>Physics</subject><issn>0003-6935</issn><issn>1559-128X</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1989</creationdate><recordtype>article</recordtype><recordid>eNo90E1LwzAYB_AgipvTm2fpQfBiZ16aNDmO4RsMetFzSNIEImk7k1bctzdjc6fnhR8PPH8AbhFcIsKqp1WzxHwJISEMn4E5okSUFcX4HMxh3pZMEDoDVyl9QYgwZ-ISzDCklNaQzcFLsx19p0LRqV_fTV1hhhhtUKMf-sL5MNpYuCEWKmo_RhV92GXSp9z73rZFa3-8sekaXDgVkr051gX4fHn-WL-Vm-b1fb3alIYgMZYMtRw6QwWiRuHWcK2pYAhSbXWlmEJC1Kquam4NR_uRW6I1wwQ5J7R2ZAEeDne3cfiebBpl55OxIajeDlOSNSGEIixwlo8HaeKQUrRObmN-NO4kgnIfnFw1EnN5CC7zu-PhSXe2PeH_pDK4PwKVjAouqt74dHKMIVwRSv4AZTd1yA</recordid><startdate>19890815</startdate><enddate>19890815</enddate><creator>FARN, M. W</creator><creator>GOODMAN, J. W</creator><general>Optical Society of America</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19890815</creationdate><title>Optimal maximum correlation filter for arbitrarily constrained devices</title><author>FARN, M. W ; GOODMAN, J. W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-61d80fc5915ca2dc8bb596105beb4a6a1997a7478ec816a198e3bb6231ff9bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1989</creationdate><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Imaging and optical processing</topic><topic>Optics</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>FARN, M. W</creatorcontrib><creatorcontrib>GOODMAN, J. W</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FARN, M. W</au><au>GOODMAN, J. W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal maximum correlation filter for arbitrarily constrained devices</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>1989-08-15</date><risdate>1989</risdate><volume>28</volume><issue>16</issue><spage>3362</spage><epage>3366</epage><pages>3362-3366</pages><issn>0003-6935</issn><issn>1559-128X</issn><eissn>1539-4522</eissn><coden>APOPAI</coden><abstract>Almost all coherent pattern recognition architectures are based on optical correlation of the input with a designed filter. However, the filter can be implemented via many different media, and each medium will impose different realizability constraints on the filter. That is, different media will have different regions of physical realizability. In the past, there has not been much work addressing the problem of designing an optimal filter given an arbitrary region of realizability. This paper presents the theory for just such an optimal filter design. A fast algorithm is presented to implement the theory. The algorithm is demonstrated with two examples.</abstract><cop>Washington, DC</cop><pub>Optical Society of America</pub><pmid>20555706</pmid><doi>10.1364/AO.28.003362</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6935
ispartof Applied Optics, 1989-08, Vol.28 (16), p.3362-3366
issn 0003-6935
1559-128X
1539-4522
language eng
recordid cdi_proquest_miscellaneous_733351292
source Alma/SFX Local Collection; Optica Publishing Group Journals
subjects Exact sciences and technology
Fundamental areas of phenomenology (including applications)
Imaging and optical processing
Optics
Physics
title Optimal maximum correlation filter for arbitrarily constrained devices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A25%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20maximum%20correlation%20filter%20for%20arbitrarily%20constrained%20devices&rft.jtitle=Applied%20Optics&rft.au=FARN,%20M.%20W&rft.date=1989-08-15&rft.volume=28&rft.issue=16&rft.spage=3362&rft.epage=3366&rft.pages=3362-3366&rft.issn=0003-6935&rft.eissn=1539-4522&rft.coden=APOPAI&rft_id=info:doi/10.1364/AO.28.003362&rft_dat=%3Cproquest_cross%3E733351292%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733351292&rft_id=info:pmid/20555706&rfr_iscdi=true