Ta3N5 Nanotube Arrays for Visible Light Water Photoelectrolysis
Tantalum nitride (Ta3N5) has a band gap of approximately 2.07 eV, suitable for collecting more than 45% of the incident solar spectrum energy. We describe a simple method for scale fabrication of highly oriented Ta3N5 nanotube array films, by anodization of tantalum foil to achieve vertically orient...
Gespeichert in:
Veröffentlicht in: | Nano letters 2010-03, Vol.10 (3), p.948-952 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 952 |
---|---|
container_issue | 3 |
container_start_page | 948 |
container_title | Nano letters |
container_volume | 10 |
creator | Feng, Xinjian LaTempa, Thomas J Basham, James I Mor, Gopal K Varghese, Oomman K Grimes, Craig A |
description | Tantalum nitride (Ta3N5) has a band gap of approximately 2.07 eV, suitable for collecting more than 45% of the incident solar spectrum energy. We describe a simple method for scale fabrication of highly oriented Ta3N5 nanotube array films, by anodization of tantalum foil to achieve vertically oriented tantalum oxide nanotube arrays followed by a 700 °C ammonia anneal for sample crystallization and nitridation. The thin walled amorphous nanotube array structure enables transformation from tantalum oxide to Ta3N5 to occur at relatively low temperatures, while high-temperature annealing related structural aggregation that commonly occurs in particle films is avoided. In 1 M KOH solution, under AM 1.5 illumination with 0.5 V dc bias typical sample (nanotube length ≈ 240 nm, wall thickness ≈ 7 nm) visible light incident photon conversion efficiencies (IPCE) as high as 5.3% were obtained. The enhanced visible light activity in combination with the ordered one-dimensional nanoarchitecture makes Ta3N5 nanotube arrays films a promising candidate for visible light water photoelectrolysis. |
doi_str_mv | 10.1021/nl903886e |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_733341922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733341922</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-7e0e9c86e7403a308845309e3253f131482f5f3a34f1d0dbd387e9a4c57bab5d3</originalsourceid><addsrcrecordid>eNpFkM1OwzAQhC0EoqVw4AVQLohTYZ21k_iEqoo_qSocChytTeLQVG5c7OTQtyeI0p5mpfm0mhnGLjnccoj5XWMVYJYl5ogNuUQYJ0rFx_s7EwN2FsIKABRKOGWDGLhIJMghu18QzmU0p8a1XW6iife0DVHlfPRRhzq3JprVX8s2-qTW-Oht6VpnrCla7-w21OGcnVRkg7nY6Yi9Pz4sps_j2evTy3QyGxNi0o5TA0YVfcJUABJClok-mzIYS6w4cpHFlax6R1S8hDIvMUuNIlHINKdcljhiN39_N959dya0el2HwlhLjXFd0CkiCq7iuCevdmSXr02pN75ek9_q_849cL0DKBRkK09NUYcDh5BwFMmBoyLolet80xfUHPTv5nq_Of4AcZduvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733341922</pqid></control><display><type>article</type><title>Ta3N5 Nanotube Arrays for Visible Light Water Photoelectrolysis</title><source>ACS Publications</source><source>MEDLINE</source><creator>Feng, Xinjian ; LaTempa, Thomas J ; Basham, James I ; Mor, Gopal K ; Varghese, Oomman K ; Grimes, Craig A</creator><creatorcontrib>Feng, Xinjian ; LaTempa, Thomas J ; Basham, James I ; Mor, Gopal K ; Varghese, Oomman K ; Grimes, Craig A</creatorcontrib><description>Tantalum nitride (Ta3N5) has a band gap of approximately 2.07 eV, suitable for collecting more than 45% of the incident solar spectrum energy. We describe a simple method for scale fabrication of highly oriented Ta3N5 nanotube array films, by anodization of tantalum foil to achieve vertically oriented tantalum oxide nanotube arrays followed by a 700 °C ammonia anneal for sample crystallization and nitridation. The thin walled amorphous nanotube array structure enables transformation from tantalum oxide to Ta3N5 to occur at relatively low temperatures, while high-temperature annealing related structural aggregation that commonly occurs in particle films is avoided. In 1 M KOH solution, under AM 1.5 illumination with 0.5 V dc bias typical sample (nanotube length ≈ 240 nm, wall thickness ≈ 7 nm) visible light incident photon conversion efficiencies (IPCE) as high as 5.3% were obtained. The enhanced visible light activity in combination with the ordered one-dimensional nanoarchitecture makes Ta3N5 nanotube arrays films a promising candidate for visible light water photoelectrolysis.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl903886e</identifier><identifier>PMID: 20146505</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Electrolysis - instrumentation ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Equipment Design ; Equipment Failure Analysis ; Exact sciences and technology ; Light ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; Nitrogen - chemistry ; Nitrogen - radiation effects ; Photochemistry - instrumentation ; Physics ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Tantalum - chemistry ; Tantalum - radiation effects ; Transducers ; Water - chemistry</subject><ispartof>Nano letters, 2010-03, Vol.10 (3), p.948-952</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl903886e$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl903886e$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,782,786,27085,27933,27934,56747,56797</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23061346$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20146505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Feng, Xinjian</creatorcontrib><creatorcontrib>LaTempa, Thomas J</creatorcontrib><creatorcontrib>Basham, James I</creatorcontrib><creatorcontrib>Mor, Gopal K</creatorcontrib><creatorcontrib>Varghese, Oomman K</creatorcontrib><creatorcontrib>Grimes, Craig A</creatorcontrib><title>Ta3N5 Nanotube Arrays for Visible Light Water Photoelectrolysis</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Tantalum nitride (Ta3N5) has a band gap of approximately 2.07 eV, suitable for collecting more than 45% of the incident solar spectrum energy. We describe a simple method for scale fabrication of highly oriented Ta3N5 nanotube array films, by anodization of tantalum foil to achieve vertically oriented tantalum oxide nanotube arrays followed by a 700 °C ammonia anneal for sample crystallization and nitridation. The thin walled amorphous nanotube array structure enables transformation from tantalum oxide to Ta3N5 to occur at relatively low temperatures, while high-temperature annealing related structural aggregation that commonly occurs in particle films is avoided. In 1 M KOH solution, under AM 1.5 illumination with 0.5 V dc bias typical sample (nanotube length ≈ 240 nm, wall thickness ≈ 7 nm) visible light incident photon conversion efficiencies (IPCE) as high as 5.3% were obtained. The enhanced visible light activity in combination with the ordered one-dimensional nanoarchitecture makes Ta3N5 nanotube arrays films a promising candidate for visible light water photoelectrolysis.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrolysis - instrumentation</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Exact sciences and technology</subject><subject>Light</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>Nitrogen - chemistry</subject><subject>Nitrogen - radiation effects</subject><subject>Photochemistry - instrumentation</subject><subject>Physics</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Tantalum - chemistry</subject><subject>Tantalum - radiation effects</subject><subject>Transducers</subject><subject>Water - chemistry</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkM1OwzAQhC0EoqVw4AVQLohTYZ21k_iEqoo_qSocChytTeLQVG5c7OTQtyeI0p5mpfm0mhnGLjnccoj5XWMVYJYl5ogNuUQYJ0rFx_s7EwN2FsIKABRKOGWDGLhIJMghu18QzmU0p8a1XW6iife0DVHlfPRRhzq3JprVX8s2-qTW-Oht6VpnrCla7-w21OGcnVRkg7nY6Yi9Pz4sps_j2evTy3QyGxNi0o5TA0YVfcJUABJClok-mzIYS6w4cpHFlax6R1S8hDIvMUuNIlHINKdcljhiN39_N959dya0el2HwlhLjXFd0CkiCq7iuCevdmSXr02pN75ek9_q_849cL0DKBRkK09NUYcDh5BwFMmBoyLolet80xfUHPTv5nq_Of4AcZduvg</recordid><startdate>20100310</startdate><enddate>20100310</enddate><creator>Feng, Xinjian</creator><creator>LaTempa, Thomas J</creator><creator>Basham, James I</creator><creator>Mor, Gopal K</creator><creator>Varghese, Oomman K</creator><creator>Grimes, Craig A</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20100310</creationdate><title>Ta3N5 Nanotube Arrays for Visible Light Water Photoelectrolysis</title><author>Feng, Xinjian ; LaTempa, Thomas J ; Basham, James I ; Mor, Gopal K ; Varghese, Oomman K ; Grimes, Craig A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-7e0e9c86e7403a308845309e3253f131482f5f3a34f1d0dbd387e9a4c57bab5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrolysis - instrumentation</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Exact sciences and technology</topic><topic>Light</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>Nitrogen - chemistry</topic><topic>Nitrogen - radiation effects</topic><topic>Photochemistry - instrumentation</topic><topic>Physics</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Tantalum - chemistry</topic><topic>Tantalum - radiation effects</topic><topic>Transducers</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Xinjian</creatorcontrib><creatorcontrib>LaTempa, Thomas J</creatorcontrib><creatorcontrib>Basham, James I</creatorcontrib><creatorcontrib>Mor, Gopal K</creatorcontrib><creatorcontrib>Varghese, Oomman K</creatorcontrib><creatorcontrib>Grimes, Craig A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Xinjian</au><au>LaTempa, Thomas J</au><au>Basham, James I</au><au>Mor, Gopal K</au><au>Varghese, Oomman K</au><au>Grimes, Craig A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ta3N5 Nanotube Arrays for Visible Light Water Photoelectrolysis</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-03-10</date><risdate>2010</risdate><volume>10</volume><issue>3</issue><spage>948</spage><epage>952</epage><pages>948-952</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Tantalum nitride (Ta3N5) has a band gap of approximately 2.07 eV, suitable for collecting more than 45% of the incident solar spectrum energy. We describe a simple method for scale fabrication of highly oriented Ta3N5 nanotube array films, by anodization of tantalum foil to achieve vertically oriented tantalum oxide nanotube arrays followed by a 700 °C ammonia anneal for sample crystallization and nitridation. The thin walled amorphous nanotube array structure enables transformation from tantalum oxide to Ta3N5 to occur at relatively low temperatures, while high-temperature annealing related structural aggregation that commonly occurs in particle films is avoided. In 1 M KOH solution, under AM 1.5 illumination with 0.5 V dc bias typical sample (nanotube length ≈ 240 nm, wall thickness ≈ 7 nm) visible light incident photon conversion efficiencies (IPCE) as high as 5.3% were obtained. The enhanced visible light activity in combination with the ordered one-dimensional nanoarchitecture makes Ta3N5 nanotube arrays films a promising candidate for visible light water photoelectrolysis.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20146505</pmid><doi>10.1021/nl903886e</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2010-03, Vol.10 (3), p.948-952 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_733341922 |
source | ACS Publications; MEDLINE |
subjects | Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Electrolysis - instrumentation Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Equipment Design Equipment Failure Analysis Exact sciences and technology Light Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Materials science Nanoscale materials and structures: fabrication and characterization Nanotubes Nitrogen - chemistry Nitrogen - radiation effects Photochemistry - instrumentation Physics Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Tantalum - chemistry Tantalum - radiation effects Transducers Water - chemistry |
title | Ta3N5 Nanotube Arrays for Visible Light Water Photoelectrolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T13%3A42%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ta3N5%20Nanotube%20Arrays%20for%20Visible%20Light%20Water%20Photoelectrolysis&rft.jtitle=Nano%20letters&rft.au=Feng,%20Xinjian&rft.date=2010-03-10&rft.volume=10&rft.issue=3&rft.spage=948&rft.epage=952&rft.pages=948-952&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl903886e&rft_dat=%3Cproquest_pubme%3E733341922%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733341922&rft_id=info:pmid/20146505&rfr_iscdi=true |