Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles

Apocarotenoids are tailored from carotenoids by oxidative enzymes [carotenoid cleavage oxygenases (CCOs)], cleaving specific double bonds of the polyene chain. The cleavage products can act as hormones, signaling compounds, chromophores and scent/aroma constituents. Recent advances were the identifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Planta 2010-06, Vol.232 (1), p.1-17
Hauptverfasser: Walter, Michael H, Floss, Daniela S, Strack, Dieter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 1
container_start_page 1
container_title Planta
container_volume 232
creator Walter, Michael H
Floss, Daniela S
Strack, Dieter
description Apocarotenoids are tailored from carotenoids by oxidative enzymes [carotenoid cleavage oxygenases (CCOs)], cleaving specific double bonds of the polyene chain. The cleavage products can act as hormones, signaling compounds, chromophores and scent/aroma constituents. Recent advances were the identification of strigolactones as apocarotenoids and the description of their novel role as shoot branching inhibitor hormones. Strigolactones are also involved in plant signaling to both harmful (parasitic weeds) and beneficial [arbuscular mycorrhizal (AM) fungi] rhizosphere residents. This review describes the progress in the characterization of CCOs, termed CCDs and NCEDs, in plants. It highlights the importance of sequential cleavage reactions of C₄₀ carotenoid precursors, the apocarotenoid cleavage oxygenase (ACO) nature of several CCOs and the topic of compartmentation. Work on the biosynthesis of abundant C₁₃ cyclohexenone and C₁₄ mycorradicin apocarotenoids in mycorrhizal roots has revealed a new role of CCD1 as an ACO of C₂₇ apocarotenoid intermediates, following their predicted export from plastid to cytosol. Manipulation of the AM-induced apocarotenoid pathway further suggests novel roles of C₁₃ apocarotenoids in controlling arbuscule turnover in the AM symbiosis. CCD7 has been established as a biosynthetic crosspoint, controlling both strigolactone and AM-induced C₁₃ apocarotenoid biosynthesis. Interdependence of the two apocarotenoid pathways may thus play a role in AM-mediated reduction of parasitic weed infestations. Potential scenarios of C₁₃ scent/aroma volatile biogenesis are discussed, including the novel mechanism revealed from mycorrhizal roots. The recent progress in apocarotenoid research opens up new perspectives for fundamental work, but has also great application potential for the horticulture, food and fragrance industries.
doi_str_mv 10.1007/s00425-010-1156-3
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_733328833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23391615</jstor_id><sourcerecordid>23391615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-a04dd5341d83bbe5598438647d13b3534ac67f004b7f34177c3add10733fd2a93</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhS0EosvCD-AAREiISwNjj5PYvVVVKZUqcYCerYnttFkl8WJnK5Vfj1dZWIkDF9uj972Z8WPsNYdPHKD5nACkqErgUHJe1SU-YSsuUZQCpHrKVgD5DRqrE_YipQ1AFpvmOTsRgLrWgCt2eb4NlmKY_RR6l86K-xDHMPl0WoyPNsR43_-ioRj9TG0Y-tmngiZXZMdIxUMYaO4Hn16yZx0Nyb863Gt2--Xyx8XX8ubb1fXF-U1ppaznkkA6V6HkTmHb-qrSSqKqZeM4tpgFsnXT5U-1TZepprFIznFoEDsnSOOafVz6bmP4ufNpNmOfrB8GmnzYJZNBFErlc83e_0Nuwi5OeTmDIGvUWu0hvkA2hpSi78w29iPFR8PB7BM2S8IG9nVO2Ow9bw-Nd-3o3V_Hn0gz8OEAULI0dJEm26cjJ1St8wKZEwuXsjTd-Xjc8H_T3yymTZpDPDZF1LzmVdbfLXpHwdBdzINvvwvgCFxJqSuOvwH-s6RO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>304639983</pqid></control><display><type>article</type><title>Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><creator>Walter, Michael H ; Floss, Daniela S ; Strack, Dieter</creator><creatorcontrib>Walter, Michael H ; Floss, Daniela S ; Strack, Dieter</creatorcontrib><description>Apocarotenoids are tailored from carotenoids by oxidative enzymes [carotenoid cleavage oxygenases (CCOs)], cleaving specific double bonds of the polyene chain. The cleavage products can act as hormones, signaling compounds, chromophores and scent/aroma constituents. Recent advances were the identification of strigolactones as apocarotenoids and the description of their novel role as shoot branching inhibitor hormones. Strigolactones are also involved in plant signaling to both harmful (parasitic weeds) and beneficial [arbuscular mycorrhizal (AM) fungi] rhizosphere residents. This review describes the progress in the characterization of CCOs, termed CCDs and NCEDs, in plants. It highlights the importance of sequential cleavage reactions of C₄₀ carotenoid precursors, the apocarotenoid cleavage oxygenase (ACO) nature of several CCOs and the topic of compartmentation. Work on the biosynthesis of abundant C₁₃ cyclohexenone and C₁₄ mycorradicin apocarotenoids in mycorrhizal roots has revealed a new role of CCD1 as an ACO of C₂₇ apocarotenoid intermediates, following their predicted export from plastid to cytosol. Manipulation of the AM-induced apocarotenoid pathway further suggests novel roles of C₁₃ apocarotenoids in controlling arbuscule turnover in the AM symbiosis. CCD7 has been established as a biosynthetic crosspoint, controlling both strigolactone and AM-induced C₁₃ apocarotenoid biosynthesis. Interdependence of the two apocarotenoid pathways may thus play a role in AM-mediated reduction of parasitic weed infestations. Potential scenarios of C₁₃ scent/aroma volatile biogenesis are discussed, including the novel mechanism revealed from mycorrhizal roots. The recent progress in apocarotenoid research opens up new perspectives for fundamental work, but has also great application potential for the horticulture, food and fragrance industries.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-010-1156-3</identifier><identifier>PMID: 20396903</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Agriculture ; Biological and medical sciences ; Biomedical and Life Sciences ; Biosynthesis ; Branching ; Carotenoids ; Carotenoids - physiology ; CCD7 ; C₁₃ apocarotenoids ; Ecology ; Enzymes ; Forestry ; Fundamental and applied biological sciences. Psychology ; Fungi ; Hormones ; Horticulture ; Life Sciences ; Metabolites ; Mycorrhizae - physiology ; Odorants ; parasitic plants ; Parasitism ; Parasitism and symbiosis ; Plant physiology and development ; Plant roots ; Plant Sciences ; Plants ; Plastids ; Radiocarbon ; REVIEW ; Rhizosphere ; Rice ; Roots ; Strigolactones ; Symbiosis ; vesicular arbuscular mycorrhizae ; Volatilization ; Weeds</subject><ispartof>Planta, 2010-06, Vol.232 (1), p.1-17</ispartof><rights>Springer-Verlag Berlin Heidelberg 2010</rights><rights>Springer-Verlag 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-a04dd5341d83bbe5598438647d13b3534ac67f004b7f34177c3add10733fd2a93</citedby><cites>FETCH-LOGICAL-c446t-a04dd5341d83bbe5598438647d13b3534ac67f004b7f34177c3add10733fd2a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23391615$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23391615$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,41464,42533,51294,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22869463$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20396903$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Walter, Michael H</creatorcontrib><creatorcontrib>Floss, Daniela S</creatorcontrib><creatorcontrib>Strack, Dieter</creatorcontrib><title>Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>Apocarotenoids are tailored from carotenoids by oxidative enzymes [carotenoid cleavage oxygenases (CCOs)], cleaving specific double bonds of the polyene chain. The cleavage products can act as hormones, signaling compounds, chromophores and scent/aroma constituents. Recent advances were the identification of strigolactones as apocarotenoids and the description of their novel role as shoot branching inhibitor hormones. Strigolactones are also involved in plant signaling to both harmful (parasitic weeds) and beneficial [arbuscular mycorrhizal (AM) fungi] rhizosphere residents. This review describes the progress in the characterization of CCOs, termed CCDs and NCEDs, in plants. It highlights the importance of sequential cleavage reactions of C₄₀ carotenoid precursors, the apocarotenoid cleavage oxygenase (ACO) nature of several CCOs and the topic of compartmentation. Work on the biosynthesis of abundant C₁₃ cyclohexenone and C₁₄ mycorradicin apocarotenoids in mycorrhizal roots has revealed a new role of CCD1 as an ACO of C₂₇ apocarotenoid intermediates, following their predicted export from plastid to cytosol. Manipulation of the AM-induced apocarotenoid pathway further suggests novel roles of C₁₃ apocarotenoids in controlling arbuscule turnover in the AM symbiosis. CCD7 has been established as a biosynthetic crosspoint, controlling both strigolactone and AM-induced C₁₃ apocarotenoid biosynthesis. Interdependence of the two apocarotenoid pathways may thus play a role in AM-mediated reduction of parasitic weed infestations. Potential scenarios of C₁₃ scent/aroma volatile biogenesis are discussed, including the novel mechanism revealed from mycorrhizal roots. The recent progress in apocarotenoid research opens up new perspectives for fundamental work, but has also great application potential for the horticulture, food and fragrance industries.</description><subject>Agriculture</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Branching</subject><subject>Carotenoids</subject><subject>Carotenoids - physiology</subject><subject>CCD7</subject><subject>C₁₃ apocarotenoids</subject><subject>Ecology</subject><subject>Enzymes</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fungi</subject><subject>Hormones</subject><subject>Horticulture</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Mycorrhizae - physiology</subject><subject>Odorants</subject><subject>parasitic plants</subject><subject>Parasitism</subject><subject>Parasitism and symbiosis</subject><subject>Plant physiology and development</subject><subject>Plant roots</subject><subject>Plant Sciences</subject><subject>Plants</subject><subject>Plastids</subject><subject>Radiocarbon</subject><subject>REVIEW</subject><subject>Rhizosphere</subject><subject>Rice</subject><subject>Roots</subject><subject>Strigolactones</subject><subject>Symbiosis</subject><subject>vesicular arbuscular mycorrhizae</subject><subject>Volatilization</subject><subject>Weeds</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kEFv1DAQhS0EosvCD-AAREiISwNjj5PYvVVVKZUqcYCerYnttFkl8WJnK5Vfj1dZWIkDF9uj972Z8WPsNYdPHKD5nACkqErgUHJe1SU-YSsuUZQCpHrKVgD5DRqrE_YipQ1AFpvmOTsRgLrWgCt2eb4NlmKY_RR6l86K-xDHMPl0WoyPNsR43_-ioRj9TG0Y-tmngiZXZMdIxUMYaO4Hn16yZx0Nyb863Gt2--Xyx8XX8ubb1fXF-U1ppaznkkA6V6HkTmHb-qrSSqKqZeM4tpgFsnXT5U-1TZepprFIznFoEDsnSOOafVz6bmP4ufNpNmOfrB8GmnzYJZNBFErlc83e_0Nuwi5OeTmDIGvUWu0hvkA2hpSi78w29iPFR8PB7BM2S8IG9nVO2Ow9bw-Nd-3o3V_Hn0gz8OEAULI0dJEm26cjJ1St8wKZEwuXsjTd-Xjc8H_T3yymTZpDPDZF1LzmVdbfLXpHwdBdzINvvwvgCFxJqSuOvwH-s6RO</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Walter, Michael H</creator><creator>Floss, Daniela S</creator><creator>Strack, Dieter</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20100601</creationdate><title>Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles</title><author>Walter, Michael H ; Floss, Daniela S ; Strack, Dieter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-a04dd5341d83bbe5598438647d13b3534ac67f004b7f34177c3add10733fd2a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Agriculture</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Branching</topic><topic>Carotenoids</topic><topic>Carotenoids - physiology</topic><topic>CCD7</topic><topic>C₁₃ apocarotenoids</topic><topic>Ecology</topic><topic>Enzymes</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fungi</topic><topic>Hormones</topic><topic>Horticulture</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Mycorrhizae - physiology</topic><topic>Odorants</topic><topic>parasitic plants</topic><topic>Parasitism</topic><topic>Parasitism and symbiosis</topic><topic>Plant physiology and development</topic><topic>Plant roots</topic><topic>Plant Sciences</topic><topic>Plants</topic><topic>Plastids</topic><topic>Radiocarbon</topic><topic>REVIEW</topic><topic>Rhizosphere</topic><topic>Rice</topic><topic>Roots</topic><topic>Strigolactones</topic><topic>Symbiosis</topic><topic>vesicular arbuscular mycorrhizae</topic><topic>Volatilization</topic><topic>Weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Walter, Michael H</creatorcontrib><creatorcontrib>Floss, Daniela S</creatorcontrib><creatorcontrib>Strack, Dieter</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Walter, Michael H</au><au>Floss, Daniela S</au><au>Strack, Dieter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>232</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>Apocarotenoids are tailored from carotenoids by oxidative enzymes [carotenoid cleavage oxygenases (CCOs)], cleaving specific double bonds of the polyene chain. The cleavage products can act as hormones, signaling compounds, chromophores and scent/aroma constituents. Recent advances were the identification of strigolactones as apocarotenoids and the description of their novel role as shoot branching inhibitor hormones. Strigolactones are also involved in plant signaling to both harmful (parasitic weeds) and beneficial [arbuscular mycorrhizal (AM) fungi] rhizosphere residents. This review describes the progress in the characterization of CCOs, termed CCDs and NCEDs, in plants. It highlights the importance of sequential cleavage reactions of C₄₀ carotenoid precursors, the apocarotenoid cleavage oxygenase (ACO) nature of several CCOs and the topic of compartmentation. Work on the biosynthesis of abundant C₁₃ cyclohexenone and C₁₄ mycorradicin apocarotenoids in mycorrhizal roots has revealed a new role of CCD1 as an ACO of C₂₇ apocarotenoid intermediates, following their predicted export from plastid to cytosol. Manipulation of the AM-induced apocarotenoid pathway further suggests novel roles of C₁₃ apocarotenoids in controlling arbuscule turnover in the AM symbiosis. CCD7 has been established as a biosynthetic crosspoint, controlling both strigolactone and AM-induced C₁₃ apocarotenoid biosynthesis. Interdependence of the two apocarotenoid pathways may thus play a role in AM-mediated reduction of parasitic weed infestations. Potential scenarios of C₁₃ scent/aroma volatile biogenesis are discussed, including the novel mechanism revealed from mycorrhizal roots. The recent progress in apocarotenoid research opens up new perspectives for fundamental work, but has also great application potential for the horticulture, food and fragrance industries.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>20396903</pmid><doi>10.1007/s00425-010-1156-3</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-0935
ispartof Planta, 2010-06, Vol.232 (1), p.1-17
issn 0032-0935
1432-2048
language eng
recordid cdi_proquest_miscellaneous_733328833
source Jstor Complete Legacy; MEDLINE; Springer Nature - Complete Springer Journals
subjects Agriculture
Biological and medical sciences
Biomedical and Life Sciences
Biosynthesis
Branching
Carotenoids
Carotenoids - physiology
CCD7
C₁₃ apocarotenoids
Ecology
Enzymes
Forestry
Fundamental and applied biological sciences. Psychology
Fungi
Hormones
Horticulture
Life Sciences
Metabolites
Mycorrhizae - physiology
Odorants
parasitic plants
Parasitism
Parasitism and symbiosis
Plant physiology and development
Plant roots
Plant Sciences
Plants
Plastids
Radiocarbon
REVIEW
Rhizosphere
Rice
Roots
Strigolactones
Symbiosis
vesicular arbuscular mycorrhizae
Volatilization
Weeds
title Apocarotenoids: hormones, mycorrhizal metabolites and aroma volatiles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Apocarotenoids:%20hormones,%20mycorrhizal%20metabolites%20and%20aroma%20volatiles&rft.jtitle=Planta&rft.au=Walter,%20Michael%20H&rft.date=2010-06-01&rft.volume=232&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-010-1156-3&rft_dat=%3Cjstor_proqu%3E23391615%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=304639983&rft_id=info:pmid/20396903&rft_jstor_id=23391615&rfr_iscdi=true