Evolutionary branching of virulence in a single-infection model

This study explores the evolutionary dynamics of pathogen virulence in a single-infection model with density-dependent mortality. Although virulence is not an adaptation of the pathogen per se, it is generally believed to be an inevitable by-product of a pathogen's need to propagate and transmi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2009-04, Vol.257 (3), p.408-418
Hauptverfasser: Svennungsen, Thomas O., Kisdi, Éva
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 418
container_issue 3
container_start_page 408
container_title Journal of theoretical biology
container_volume 257
creator Svennungsen, Thomas O.
Kisdi, Éva
description This study explores the evolutionary dynamics of pathogen virulence in a single-infection model with density-dependent mortality. Although virulence is not an adaptation of the pathogen per se, it is generally believed to be an inevitable by-product of a pathogen's need to propagate and transmit to new hosts: an increase in virulence will parallel an increase in transmission efficacy. The exact characteristics of the trade-off curve defined by this relationship are important with respect to possible evolutionary scenarios. We conduct a critical function analysis, a method that exposes the evolutionary outcome resulting from trade-offs of arbitrary shape, and find that this simple model can display a wide variety of evolutionary dynamics; comprising multiple stable attractors, evolutionary repellors, and most notably, evolutionary branching points. We identify the conditions under which the different evolutionary outcomes are realised. Our analysis furthermore considers the evolution of coexisting strains, and identifies the trade-off characteristics that will support an evolutionarily stable dimorphic state. We find that an evolutionarily stable dimorphism may exist also in the absence of a branching point in the monomorphic state. The analysis reveals that an evolutionarily stable dimorphism will always be attracting and that no further branching is possible under this model. We discuss our results in relation to the dimension of the environmental feedback inherent in the model, and to results from previous studies and models of evolution of virulence.
doi_str_mv 10.1016/j.jtbi.2008.11.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733319141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519308006097</els_id><sourcerecordid>733319141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-ac197765692f648c72ed40900f974290b43c60a89873cd665f7757fc538d87b33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rr6BzxIb55aJ02TNCCILOsHLHjRc2jTRFPaZk3aBf-9KbvgzdPA8Mw7vA9C1xgyDJjdtVk71jbLAcoM4wxwcYKWGARNS1rgU7QEyPOUYkEW6CKEFgBEQdg5WmARAygTS_Sw2btuGq0bKv-T1L4a1JcdPhNnkr31U6cHpRM7JFUS4rrTqR2MVjOf9K7R3SU6M1UX9NVxrtDH0-Z9_ZJu355f14_bVBFKx7RSWHDO4svcsKJUPNdNAQLACF7kAuqCKAZVKUpOVMMYNZxTbhQlZVPympAVuj3k7rz7nnQYZW-D0l1XDdpNQXJCSGxV4EjmB1J5F4LXRu687WM7iUHO3mQrZ29y9iYxltFbPLo5xk91r5u_k6OoCNwfAB1L7q32Mig7y2msjz5k4-x_-b9FJn0s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733319141</pqid></control><display><type>article</type><title>Evolutionary branching of virulence in a single-infection model</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Svennungsen, Thomas O. ; Kisdi, Éva</creator><creatorcontrib>Svennungsen, Thomas O. ; Kisdi, Éva</creatorcontrib><description>This study explores the evolutionary dynamics of pathogen virulence in a single-infection model with density-dependent mortality. Although virulence is not an adaptation of the pathogen per se, it is generally believed to be an inevitable by-product of a pathogen's need to propagate and transmit to new hosts: an increase in virulence will parallel an increase in transmission efficacy. The exact characteristics of the trade-off curve defined by this relationship are important with respect to possible evolutionary scenarios. We conduct a critical function analysis, a method that exposes the evolutionary outcome resulting from trade-offs of arbitrary shape, and find that this simple model can display a wide variety of evolutionary dynamics; comprising multiple stable attractors, evolutionary repellors, and most notably, evolutionary branching points. We identify the conditions under which the different evolutionary outcomes are realised. Our analysis furthermore considers the evolution of coexisting strains, and identifies the trade-off characteristics that will support an evolutionarily stable dimorphic state. We find that an evolutionarily stable dimorphism may exist also in the absence of a branching point in the monomorphic state. The analysis reveals that an evolutionarily stable dimorphism will always be attracting and that no further branching is possible under this model. We discuss our results in relation to the dimension of the environmental feedback inherent in the model, and to results from previous studies and models of evolution of virulence.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2008.11.014</identifier><identifier>PMID: 19101569</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adaptation, Physiological - genetics ; Adaptive dynamics ; Animals ; Biological Evolution ; Coexistence of pathogen strains ; Critical function analysis ; Cross-immunity ; Evolutionary branching ; Host-Pathogen Interactions - genetics ; Infection - microbiology ; Models, Genetic ; Single-infection model ; Trade-off ; Virulence - genetics ; Virulence evolution</subject><ispartof>Journal of theoretical biology, 2009-04, Vol.257 (3), p.408-418</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-ac197765692f648c72ed40900f974290b43c60a89873cd665f7757fc538d87b33</citedby><cites>FETCH-LOGICAL-c355t-ac197765692f648c72ed40900f974290b43c60a89873cd665f7757fc538d87b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2008.11.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19101569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Svennungsen, Thomas O.</creatorcontrib><creatorcontrib>Kisdi, Éva</creatorcontrib><title>Evolutionary branching of virulence in a single-infection model</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>This study explores the evolutionary dynamics of pathogen virulence in a single-infection model with density-dependent mortality. Although virulence is not an adaptation of the pathogen per se, it is generally believed to be an inevitable by-product of a pathogen's need to propagate and transmit to new hosts: an increase in virulence will parallel an increase in transmission efficacy. The exact characteristics of the trade-off curve defined by this relationship are important with respect to possible evolutionary scenarios. We conduct a critical function analysis, a method that exposes the evolutionary outcome resulting from trade-offs of arbitrary shape, and find that this simple model can display a wide variety of evolutionary dynamics; comprising multiple stable attractors, evolutionary repellors, and most notably, evolutionary branching points. We identify the conditions under which the different evolutionary outcomes are realised. Our analysis furthermore considers the evolution of coexisting strains, and identifies the trade-off characteristics that will support an evolutionarily stable dimorphic state. We find that an evolutionarily stable dimorphism may exist also in the absence of a branching point in the monomorphic state. The analysis reveals that an evolutionarily stable dimorphism will always be attracting and that no further branching is possible under this model. We discuss our results in relation to the dimension of the environmental feedback inherent in the model, and to results from previous studies and models of evolution of virulence.</description><subject>Adaptation, Physiological - genetics</subject><subject>Adaptive dynamics</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>Coexistence of pathogen strains</subject><subject>Critical function analysis</subject><subject>Cross-immunity</subject><subject>Evolutionary branching</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Infection - microbiology</subject><subject>Models, Genetic</subject><subject>Single-infection model</subject><subject>Trade-off</subject><subject>Virulence - genetics</subject><subject>Virulence evolution</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7rr6BzxIb55aJ02TNCCILOsHLHjRc2jTRFPaZk3aBf-9KbvgzdPA8Mw7vA9C1xgyDJjdtVk71jbLAcoM4wxwcYKWGARNS1rgU7QEyPOUYkEW6CKEFgBEQdg5WmARAygTS_Sw2btuGq0bKv-T1L4a1JcdPhNnkr31U6cHpRM7JFUS4rrTqR2MVjOf9K7R3SU6M1UX9NVxrtDH0-Z9_ZJu355f14_bVBFKx7RSWHDO4svcsKJUPNdNAQLACF7kAuqCKAZVKUpOVMMYNZxTbhQlZVPympAVuj3k7rz7nnQYZW-D0l1XDdpNQXJCSGxV4EjmB1J5F4LXRu687WM7iUHO3mQrZ29y9iYxltFbPLo5xk91r5u_k6OoCNwfAB1L7q32Mig7y2msjz5k4-x_-b9FJn0s</recordid><startdate>20090407</startdate><enddate>20090407</enddate><creator>Svennungsen, Thomas O.</creator><creator>Kisdi, Éva</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090407</creationdate><title>Evolutionary branching of virulence in a single-infection model</title><author>Svennungsen, Thomas O. ; Kisdi, Éva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-ac197765692f648c72ed40900f974290b43c60a89873cd665f7757fc538d87b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Adaptive dynamics</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>Coexistence of pathogen strains</topic><topic>Critical function analysis</topic><topic>Cross-immunity</topic><topic>Evolutionary branching</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Infection - microbiology</topic><topic>Models, Genetic</topic><topic>Single-infection model</topic><topic>Trade-off</topic><topic>Virulence - genetics</topic><topic>Virulence evolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svennungsen, Thomas O.</creatorcontrib><creatorcontrib>Kisdi, Éva</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svennungsen, Thomas O.</au><au>Kisdi, Éva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary branching of virulence in a single-infection model</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2009-04-07</date><risdate>2009</risdate><volume>257</volume><issue>3</issue><spage>408</spage><epage>418</epage><pages>408-418</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>This study explores the evolutionary dynamics of pathogen virulence in a single-infection model with density-dependent mortality. Although virulence is not an adaptation of the pathogen per se, it is generally believed to be an inevitable by-product of a pathogen's need to propagate and transmit to new hosts: an increase in virulence will parallel an increase in transmission efficacy. The exact characteristics of the trade-off curve defined by this relationship are important with respect to possible evolutionary scenarios. We conduct a critical function analysis, a method that exposes the evolutionary outcome resulting from trade-offs of arbitrary shape, and find that this simple model can display a wide variety of evolutionary dynamics; comprising multiple stable attractors, evolutionary repellors, and most notably, evolutionary branching points. We identify the conditions under which the different evolutionary outcomes are realised. Our analysis furthermore considers the evolution of coexisting strains, and identifies the trade-off characteristics that will support an evolutionarily stable dimorphic state. We find that an evolutionarily stable dimorphism may exist also in the absence of a branching point in the monomorphic state. The analysis reveals that an evolutionarily stable dimorphism will always be attracting and that no further branching is possible under this model. We discuss our results in relation to the dimension of the environmental feedback inherent in the model, and to results from previous studies and models of evolution of virulence.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19101569</pmid><doi>10.1016/j.jtbi.2008.11.014</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2009-04, Vol.257 (3), p.408-418
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_733319141
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adaptation, Physiological - genetics
Adaptive dynamics
Animals
Biological Evolution
Coexistence of pathogen strains
Critical function analysis
Cross-immunity
Evolutionary branching
Host-Pathogen Interactions - genetics
Infection - microbiology
Models, Genetic
Single-infection model
Trade-off
Virulence - genetics
Virulence evolution
title Evolutionary branching of virulence in a single-infection model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20branching%20of%20virulence%20in%20a%20single-infection%20model&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Svennungsen,%20Thomas%20O.&rft.date=2009-04-07&rft.volume=257&rft.issue=3&rft.spage=408&rft.epage=418&rft.pages=408-418&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2008.11.014&rft_dat=%3Cproquest_cross%3E733319141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733319141&rft_id=info:pmid/19101569&rft_els_id=S0022519308006097&rfr_iscdi=true