Evolutionary branching of virulence in a single-infection model
This study explores the evolutionary dynamics of pathogen virulence in a single-infection model with density-dependent mortality. Although virulence is not an adaptation of the pathogen per se, it is generally believed to be an inevitable by-product of a pathogen's need to propagate and transmi...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2009-04, Vol.257 (3), p.408-418 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 418 |
---|---|
container_issue | 3 |
container_start_page | 408 |
container_title | Journal of theoretical biology |
container_volume | 257 |
creator | Svennungsen, Thomas O. Kisdi, Éva |
description | This study explores the evolutionary dynamics of pathogen virulence in a single-infection model with density-dependent mortality. Although virulence is not an adaptation of the pathogen
per se, it is generally believed to be an inevitable by-product of a pathogen's need to propagate and transmit to new hosts: an increase in virulence will parallel an increase in transmission efficacy. The exact characteristics of the trade-off curve defined by this relationship are important with respect to possible evolutionary scenarios. We conduct a critical function analysis, a method that exposes the evolutionary outcome resulting from trade-offs of arbitrary shape, and find that this simple model can display a wide variety of evolutionary dynamics; comprising multiple stable attractors, evolutionary repellors, and most notably, evolutionary branching points. We identify the conditions under which the different evolutionary outcomes are realised. Our analysis furthermore considers the evolution of coexisting strains, and identifies the trade-off characteristics that will support an evolutionarily stable dimorphic state. We find that an evolutionarily stable dimorphism may exist also in the absence of a branching point in the monomorphic state. The analysis reveals that an evolutionarily stable dimorphism will always be attracting and that no further branching is possible under this model. We discuss our results in relation to the dimension of the environmental feedback inherent in the model, and to results from previous studies and models of evolution of virulence. |
doi_str_mv | 10.1016/j.jtbi.2008.11.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733319141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519308006097</els_id><sourcerecordid>733319141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-ac197765692f648c72ed40900f974290b43c60a89873cd665f7757fc538d87b33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7rr6BzxIb55aJ02TNCCILOsHLHjRc2jTRFPaZk3aBf-9KbvgzdPA8Mw7vA9C1xgyDJjdtVk71jbLAcoM4wxwcYKWGARNS1rgU7QEyPOUYkEW6CKEFgBEQdg5WmARAygTS_Sw2btuGq0bKv-T1L4a1JcdPhNnkr31U6cHpRM7JFUS4rrTqR2MVjOf9K7R3SU6M1UX9NVxrtDH0-Z9_ZJu355f14_bVBFKx7RSWHDO4svcsKJUPNdNAQLACF7kAuqCKAZVKUpOVMMYNZxTbhQlZVPympAVuj3k7rz7nnQYZW-D0l1XDdpNQXJCSGxV4EjmB1J5F4LXRu687WM7iUHO3mQrZ29y9iYxltFbPLo5xk91r5u_k6OoCNwfAB1L7q32Mig7y2msjz5k4-x_-b9FJn0s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733319141</pqid></control><display><type>article</type><title>Evolutionary branching of virulence in a single-infection model</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Svennungsen, Thomas O. ; Kisdi, Éva</creator><creatorcontrib>Svennungsen, Thomas O. ; Kisdi, Éva</creatorcontrib><description>This study explores the evolutionary dynamics of pathogen virulence in a single-infection model with density-dependent mortality. Although virulence is not an adaptation of the pathogen
per se, it is generally believed to be an inevitable by-product of a pathogen's need to propagate and transmit to new hosts: an increase in virulence will parallel an increase in transmission efficacy. The exact characteristics of the trade-off curve defined by this relationship are important with respect to possible evolutionary scenarios. We conduct a critical function analysis, a method that exposes the evolutionary outcome resulting from trade-offs of arbitrary shape, and find that this simple model can display a wide variety of evolutionary dynamics; comprising multiple stable attractors, evolutionary repellors, and most notably, evolutionary branching points. We identify the conditions under which the different evolutionary outcomes are realised. Our analysis furthermore considers the evolution of coexisting strains, and identifies the trade-off characteristics that will support an evolutionarily stable dimorphic state. We find that an evolutionarily stable dimorphism may exist also in the absence of a branching point in the monomorphic state. The analysis reveals that an evolutionarily stable dimorphism will always be attracting and that no further branching is possible under this model. We discuss our results in relation to the dimension of the environmental feedback inherent in the model, and to results from previous studies and models of evolution of virulence.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2008.11.014</identifier><identifier>PMID: 19101569</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adaptation, Physiological - genetics ; Adaptive dynamics ; Animals ; Biological Evolution ; Coexistence of pathogen strains ; Critical function analysis ; Cross-immunity ; Evolutionary branching ; Host-Pathogen Interactions - genetics ; Infection - microbiology ; Models, Genetic ; Single-infection model ; Trade-off ; Virulence - genetics ; Virulence evolution</subject><ispartof>Journal of theoretical biology, 2009-04, Vol.257 (3), p.408-418</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-ac197765692f648c72ed40900f974290b43c60a89873cd665f7757fc538d87b33</citedby><cites>FETCH-LOGICAL-c355t-ac197765692f648c72ed40900f974290b43c60a89873cd665f7757fc538d87b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2008.11.014$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19101569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Svennungsen, Thomas O.</creatorcontrib><creatorcontrib>Kisdi, Éva</creatorcontrib><title>Evolutionary branching of virulence in a single-infection model</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>This study explores the evolutionary dynamics of pathogen virulence in a single-infection model with density-dependent mortality. Although virulence is not an adaptation of the pathogen
per se, it is generally believed to be an inevitable by-product of a pathogen's need to propagate and transmit to new hosts: an increase in virulence will parallel an increase in transmission efficacy. The exact characteristics of the trade-off curve defined by this relationship are important with respect to possible evolutionary scenarios. We conduct a critical function analysis, a method that exposes the evolutionary outcome resulting from trade-offs of arbitrary shape, and find that this simple model can display a wide variety of evolutionary dynamics; comprising multiple stable attractors, evolutionary repellors, and most notably, evolutionary branching points. We identify the conditions under which the different evolutionary outcomes are realised. Our analysis furthermore considers the evolution of coexisting strains, and identifies the trade-off characteristics that will support an evolutionarily stable dimorphic state. We find that an evolutionarily stable dimorphism may exist also in the absence of a branching point in the monomorphic state. The analysis reveals that an evolutionarily stable dimorphism will always be attracting and that no further branching is possible under this model. We discuss our results in relation to the dimension of the environmental feedback inherent in the model, and to results from previous studies and models of evolution of virulence.</description><subject>Adaptation, Physiological - genetics</subject><subject>Adaptive dynamics</subject><subject>Animals</subject><subject>Biological Evolution</subject><subject>Coexistence of pathogen strains</subject><subject>Critical function analysis</subject><subject>Cross-immunity</subject><subject>Evolutionary branching</subject><subject>Host-Pathogen Interactions - genetics</subject><subject>Infection - microbiology</subject><subject>Models, Genetic</subject><subject>Single-infection model</subject><subject>Trade-off</subject><subject>Virulence - genetics</subject><subject>Virulence evolution</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7rr6BzxIb55aJ02TNCCILOsHLHjRc2jTRFPaZk3aBf-9KbvgzdPA8Mw7vA9C1xgyDJjdtVk71jbLAcoM4wxwcYKWGARNS1rgU7QEyPOUYkEW6CKEFgBEQdg5WmARAygTS_Sw2btuGq0bKv-T1L4a1JcdPhNnkr31U6cHpRM7JFUS4rrTqR2MVjOf9K7R3SU6M1UX9NVxrtDH0-Z9_ZJu355f14_bVBFKx7RSWHDO4svcsKJUPNdNAQLACF7kAuqCKAZVKUpOVMMYNZxTbhQlZVPympAVuj3k7rz7nnQYZW-D0l1XDdpNQXJCSGxV4EjmB1J5F4LXRu687WM7iUHO3mQrZ29y9iYxltFbPLo5xk91r5u_k6OoCNwfAB1L7q32Mig7y2msjz5k4-x_-b9FJn0s</recordid><startdate>20090407</startdate><enddate>20090407</enddate><creator>Svennungsen, Thomas O.</creator><creator>Kisdi, Éva</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20090407</creationdate><title>Evolutionary branching of virulence in a single-infection model</title><author>Svennungsen, Thomas O. ; Kisdi, Éva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-ac197765692f648c72ed40900f974290b43c60a89873cd665f7757fc538d87b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>Adaptive dynamics</topic><topic>Animals</topic><topic>Biological Evolution</topic><topic>Coexistence of pathogen strains</topic><topic>Critical function analysis</topic><topic>Cross-immunity</topic><topic>Evolutionary branching</topic><topic>Host-Pathogen Interactions - genetics</topic><topic>Infection - microbiology</topic><topic>Models, Genetic</topic><topic>Single-infection model</topic><topic>Trade-off</topic><topic>Virulence - genetics</topic><topic>Virulence evolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svennungsen, Thomas O.</creatorcontrib><creatorcontrib>Kisdi, Éva</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svennungsen, Thomas O.</au><au>Kisdi, Éva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary branching of virulence in a single-infection model</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2009-04-07</date><risdate>2009</risdate><volume>257</volume><issue>3</issue><spage>408</spage><epage>418</epage><pages>408-418</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>This study explores the evolutionary dynamics of pathogen virulence in a single-infection model with density-dependent mortality. Although virulence is not an adaptation of the pathogen
per se, it is generally believed to be an inevitable by-product of a pathogen's need to propagate and transmit to new hosts: an increase in virulence will parallel an increase in transmission efficacy. The exact characteristics of the trade-off curve defined by this relationship are important with respect to possible evolutionary scenarios. We conduct a critical function analysis, a method that exposes the evolutionary outcome resulting from trade-offs of arbitrary shape, and find that this simple model can display a wide variety of evolutionary dynamics; comprising multiple stable attractors, evolutionary repellors, and most notably, evolutionary branching points. We identify the conditions under which the different evolutionary outcomes are realised. Our analysis furthermore considers the evolution of coexisting strains, and identifies the trade-off characteristics that will support an evolutionarily stable dimorphic state. We find that an evolutionarily stable dimorphism may exist also in the absence of a branching point in the monomorphic state. The analysis reveals that an evolutionarily stable dimorphism will always be attracting and that no further branching is possible under this model. We discuss our results in relation to the dimension of the environmental feedback inherent in the model, and to results from previous studies and models of evolution of virulence.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19101569</pmid><doi>10.1016/j.jtbi.2008.11.014</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5193 |
ispartof | Journal of theoretical biology, 2009-04, Vol.257 (3), p.408-418 |
issn | 0022-5193 1095-8541 |
language | eng |
recordid | cdi_proquest_miscellaneous_733319141 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Adaptation, Physiological - genetics Adaptive dynamics Animals Biological Evolution Coexistence of pathogen strains Critical function analysis Cross-immunity Evolutionary branching Host-Pathogen Interactions - genetics Infection - microbiology Models, Genetic Single-infection model Trade-off Virulence - genetics Virulence evolution |
title | Evolutionary branching of virulence in a single-infection model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A59%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20branching%20of%20virulence%20in%20a%20single-infection%20model&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Svennungsen,%20Thomas%20O.&rft.date=2009-04-07&rft.volume=257&rft.issue=3&rft.spage=408&rft.epage=418&rft.pages=408-418&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2008.11.014&rft_dat=%3Cproquest_cross%3E733319141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733319141&rft_id=info:pmid/19101569&rft_els_id=S0022519308006097&rfr_iscdi=true |