Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae

A current challenge of the cellulosic ethanol industry is the effect of inhibitors present in biomass hydrolysates. Acetic acid is an example of one such inhibitor that is released during the pretreatment of hemicellulose. This study examined the effect of acetic acid on the cofermentation of glucos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:FEMS yeast research 2010-06, Vol.10 (4), p.385-393
Hauptverfasser: Casey, Elizabeth, Sedlak, Miroslav, Ho, Nancy W.Y, Mosier, Nathan S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 393
container_issue 4
container_start_page 385
container_title FEMS yeast research
container_volume 10
creator Casey, Elizabeth
Sedlak, Miroslav
Ho, Nancy W.Y
Mosier, Nathan S
description A current challenge of the cellulosic ethanol industry is the effect of inhibitors present in biomass hydrolysates. Acetic acid is an example of one such inhibitor that is released during the pretreatment of hemicellulose. This study examined the effect of acetic acid on the cofermentation of glucose and xylose under controlled pH conditions by Saccharomyces cerevisiae 424A(LNH-ST), a genetically engineered industrial yeast strain. Acetic acid concentrations of 7.5 and 15 g L⁻¹, representing the range of concentrations expected in actual biomass hydrolysates, were tested under controlled pH conditions of 5, 5.5, and 6. The presence of acetic acid in the fermentation media led to a significant decrease in the observed maximum cell biomass concentration. Glucose- and xylose-specific consumption rates decreased as the acetic acid concentration increased, with the inhibitory effect being more severe for xylose consumption. The ethanol production rates also decreased when acetic acid was present, but ethanol metabolic yields increased under the same conditions. The results also revealed that the inhibitory effect of acetic acid could be reduced by increasing media pH, thus confirming that the undissociated form of acetic acid is the inhibitory form of the molecule.
doi_str_mv 10.1111/j.1567-1364.2010.00623.x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_733303977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1567-1364.2010.00623.x</oup_id><sourcerecordid>2335085639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4803-eb5c18c652f398f94154389c3ab15d8a6a678df445ee3821eb6a17c8b8e392313</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhiMEoqXwCmCJA6csdiaxHYkLqlqKVAmJ0gMna-JMdr1K4iVOyuY1eGKc3bIHEL7MaOb7f438JwkTfCXie79diUKqVIDMVxmPU85lBqv9k-T8tHh66gt5lrwIYcu5UJzr58lZxnOeqVKeJ7-umobsyHzD0NLobCyuZtjXbHfDfM_GDTHrGxo66kccXRxFdt1O1gc6cPu5XdrRMxo32PuWVTNDtqZ-8cO2nRn1a9cTDVSzMA7oDh53aO0GB9_NlgKzcfvggkN6mTxrsA306rFeJPfXV98ub9LbL58-X368TW2uOaRUFVZoK4usgVI3ZS6KHHRpAStR1BolSqXrJs8LItCZoEqiUFZXmqDMQMBF8u7ouxv8j4nCaDoXLLUt9uSnYBQAcCiViuTbv8itn4Y-HmcygILrQkIZqdeP1FR1VJvd4DocZvPnsyPw4Qj8dC3Np73gZgnVbM2Sl1myM0uo5hCq2Zvr719jE-VwlPtp9x9x-o84qt4cVQ16g-vBBXN_FwngQoPSqoTfRtatgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2335085639</pqid></control><display><type>article</type><title>Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Casey, Elizabeth ; Sedlak, Miroslav ; Ho, Nancy W.Y ; Mosier, Nathan S</creator><creatorcontrib>Casey, Elizabeth ; Sedlak, Miroslav ; Ho, Nancy W.Y ; Mosier, Nathan S</creatorcontrib><description>A current challenge of the cellulosic ethanol industry is the effect of inhibitors present in biomass hydrolysates. Acetic acid is an example of one such inhibitor that is released during the pretreatment of hemicellulose. This study examined the effect of acetic acid on the cofermentation of glucose and xylose under controlled pH conditions by Saccharomyces cerevisiae 424A(LNH-ST), a genetically engineered industrial yeast strain. Acetic acid concentrations of 7.5 and 15 g L⁻¹, representing the range of concentrations expected in actual biomass hydrolysates, were tested under controlled pH conditions of 5, 5.5, and 6. The presence of acetic acid in the fermentation media led to a significant decrease in the observed maximum cell biomass concentration. Glucose- and xylose-specific consumption rates decreased as the acetic acid concentration increased, with the inhibitory effect being more severe for xylose consumption. The ethanol production rates also decreased when acetic acid was present, but ethanol metabolic yields increased under the same conditions. The results also revealed that the inhibitory effect of acetic acid could be reduced by increasing media pH, thus confirming that the undissociated form of acetic acid is the inhibitory form of the molecule.</description><identifier>ISSN: 1567-1356</identifier><identifier>EISSN: 1567-1364</identifier><identifier>DOI: 10.1111/j.1567-1364.2010.00623.x</identifier><identifier>PMID: 20402796</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Acetic acid ; Acetic Acid - toxicity ; Acids ; Biomass ; cellulose ; Ethanol ; Ethanol - metabolism ; Fermentation ; Fermentation - drug effects ; Genetic Engineering ; Glucose ; Glucose - metabolism ; Hemicellulose ; Hydrogen-Ion Concentration ; Hydrolysates ; Industrial Microbiology ; inhibition ; Metabolic Networks and Pathways - genetics ; pH effects ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Xylose ; Xylose - metabolism ; Yeast</subject><ispartof>FEMS yeast research, 2010-06, Vol.10 (4), p.385-393</ispartof><rights>2010 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved 2010</rights><rights>2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved</rights><rights>2010 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4803-eb5c18c652f398f94154389c3ab15d8a6a678df445ee3821eb6a17c8b8e392313</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1567-1364.2010.00623.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1567-1364.2010.00623.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20402796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Casey, Elizabeth</creatorcontrib><creatorcontrib>Sedlak, Miroslav</creatorcontrib><creatorcontrib>Ho, Nancy W.Y</creatorcontrib><creatorcontrib>Mosier, Nathan S</creatorcontrib><title>Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae</title><title>FEMS yeast research</title><addtitle>FEMS Yeast Res</addtitle><description>A current challenge of the cellulosic ethanol industry is the effect of inhibitors present in biomass hydrolysates. Acetic acid is an example of one such inhibitor that is released during the pretreatment of hemicellulose. This study examined the effect of acetic acid on the cofermentation of glucose and xylose under controlled pH conditions by Saccharomyces cerevisiae 424A(LNH-ST), a genetically engineered industrial yeast strain. Acetic acid concentrations of 7.5 and 15 g L⁻¹, representing the range of concentrations expected in actual biomass hydrolysates, were tested under controlled pH conditions of 5, 5.5, and 6. The presence of acetic acid in the fermentation media led to a significant decrease in the observed maximum cell biomass concentration. Glucose- and xylose-specific consumption rates decreased as the acetic acid concentration increased, with the inhibitory effect being more severe for xylose consumption. The ethanol production rates also decreased when acetic acid was present, but ethanol metabolic yields increased under the same conditions. The results also revealed that the inhibitory effect of acetic acid could be reduced by increasing media pH, thus confirming that the undissociated form of acetic acid is the inhibitory form of the molecule.</description><subject>Acetic acid</subject><subject>Acetic Acid - toxicity</subject><subject>Acids</subject><subject>Biomass</subject><subject>cellulose</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fermentation</subject><subject>Fermentation - drug effects</subject><subject>Genetic Engineering</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Hemicellulose</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysates</subject><subject>Industrial Microbiology</subject><subject>inhibition</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>pH effects</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Xylose</subject><subject>Xylose - metabolism</subject><subject>Yeast</subject><issn>1567-1356</issn><issn>1567-1364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kcFu1DAQhiMEoqXwCmCJA6csdiaxHYkLqlqKVAmJ0gMna-JMdr1K4iVOyuY1eGKc3bIHEL7MaOb7f438JwkTfCXie79diUKqVIDMVxmPU85lBqv9k-T8tHh66gt5lrwIYcu5UJzr58lZxnOeqVKeJ7-umobsyHzD0NLobCyuZtjXbHfDfM_GDTHrGxo66kccXRxFdt1O1gc6cPu5XdrRMxo32PuWVTNDtqZ-8cO2nRn1a9cTDVSzMA7oDh53aO0GB9_NlgKzcfvggkN6mTxrsA306rFeJPfXV98ub9LbL58-X368TW2uOaRUFVZoK4usgVI3ZS6KHHRpAStR1BolSqXrJs8LItCZoEqiUFZXmqDMQMBF8u7ouxv8j4nCaDoXLLUt9uSnYBQAcCiViuTbv8itn4Y-HmcygILrQkIZqdeP1FR1VJvd4DocZvPnsyPw4Qj8dC3Np73gZgnVbM2Sl1myM0uo5hCq2Zvr719jE-VwlPtp9x9x-o84qt4cVQ16g-vBBXN_FwngQoPSqoTfRtatgg</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Casey, Elizabeth</creator><creator>Sedlak, Miroslav</creator><creator>Ho, Nancy W.Y</creator><creator>Mosier, Nathan S</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>201006</creationdate><title>Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae</title><author>Casey, Elizabeth ; Sedlak, Miroslav ; Ho, Nancy W.Y ; Mosier, Nathan S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4803-eb5c18c652f398f94154389c3ab15d8a6a678df445ee3821eb6a17c8b8e392313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetic acid</topic><topic>Acetic Acid - toxicity</topic><topic>Acids</topic><topic>Biomass</topic><topic>cellulose</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fermentation</topic><topic>Fermentation - drug effects</topic><topic>Genetic Engineering</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Hemicellulose</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysates</topic><topic>Industrial Microbiology</topic><topic>inhibition</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>pH effects</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Xylose</topic><topic>Xylose - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casey, Elizabeth</creatorcontrib><creatorcontrib>Sedlak, Miroslav</creatorcontrib><creatorcontrib>Ho, Nancy W.Y</creatorcontrib><creatorcontrib>Mosier, Nathan S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS yeast research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casey, Elizabeth</au><au>Sedlak, Miroslav</au><au>Ho, Nancy W.Y</au><au>Mosier, Nathan S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae</atitle><jtitle>FEMS yeast research</jtitle><addtitle>FEMS Yeast Res</addtitle><date>2010-06</date><risdate>2010</risdate><volume>10</volume><issue>4</issue><spage>385</spage><epage>393</epage><pages>385-393</pages><issn>1567-1356</issn><eissn>1567-1364</eissn><abstract>A current challenge of the cellulosic ethanol industry is the effect of inhibitors present in biomass hydrolysates. Acetic acid is an example of one such inhibitor that is released during the pretreatment of hemicellulose. This study examined the effect of acetic acid on the cofermentation of glucose and xylose under controlled pH conditions by Saccharomyces cerevisiae 424A(LNH-ST), a genetically engineered industrial yeast strain. Acetic acid concentrations of 7.5 and 15 g L⁻¹, representing the range of concentrations expected in actual biomass hydrolysates, were tested under controlled pH conditions of 5, 5.5, and 6. The presence of acetic acid in the fermentation media led to a significant decrease in the observed maximum cell biomass concentration. Glucose- and xylose-specific consumption rates decreased as the acetic acid concentration increased, with the inhibitory effect being more severe for xylose consumption. The ethanol production rates also decreased when acetic acid was present, but ethanol metabolic yields increased under the same conditions. The results also revealed that the inhibitory effect of acetic acid could be reduced by increasing media pH, thus confirming that the undissociated form of acetic acid is the inhibitory form of the molecule.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>20402796</pmid><doi>10.1111/j.1567-1364.2010.00623.x</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1567-1356
ispartof FEMS yeast research, 2010-06, Vol.10 (4), p.385-393
issn 1567-1356
1567-1364
language eng
recordid cdi_proquest_miscellaneous_733303977
source Oxford Journals Open Access Collection; MEDLINE; Wiley Online Library; Alma/SFX Local Collection
subjects Acetic acid
Acetic Acid - toxicity
Acids
Biomass
cellulose
Ethanol
Ethanol - metabolism
Fermentation
Fermentation - drug effects
Genetic Engineering
Glucose
Glucose - metabolism
Hemicellulose
Hydrogen-Ion Concentration
Hydrolysates
Industrial Microbiology
inhibition
Metabolic Networks and Pathways - genetics
pH effects
Saccharomyces cerevisiae
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Xylose
Xylose - metabolism
Yeast
title Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20acetic%20acid%20and%20pH%20on%20the%20cofermentation%20of%20glucose%20and%20xylose%20to%20ethanol%20by%20a%20genetically%20engineered%20strain%20of%20Saccharomyces%20cerevisiae&rft.jtitle=FEMS%20yeast%20research&rft.au=Casey,%20Elizabeth&rft.date=2010-06&rft.volume=10&rft.issue=4&rft.spage=385&rft.epage=393&rft.pages=385-393&rft.issn=1567-1356&rft.eissn=1567-1364&rft_id=info:doi/10.1111/j.1567-1364.2010.00623.x&rft_dat=%3Cproquest_pubme%3E2335085639%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2335085639&rft_id=info:pmid/20402796&rft_oup_id=10.1111/j.1567-1364.2010.00623.x&rfr_iscdi=true