Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae
A current challenge of the cellulosic ethanol industry is the effect of inhibitors present in biomass hydrolysates. Acetic acid is an example of one such inhibitor that is released during the pretreatment of hemicellulose. This study examined the effect of acetic acid on the cofermentation of glucos...
Gespeichert in:
Veröffentlicht in: | FEMS yeast research 2010-06, Vol.10 (4), p.385-393 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 393 |
---|---|
container_issue | 4 |
container_start_page | 385 |
container_title | FEMS yeast research |
container_volume | 10 |
creator | Casey, Elizabeth Sedlak, Miroslav Ho, Nancy W.Y Mosier, Nathan S |
description | A current challenge of the cellulosic ethanol industry is the effect of inhibitors present in biomass hydrolysates. Acetic acid is an example of one such inhibitor that is released during the pretreatment of hemicellulose. This study examined the effect of acetic acid on the cofermentation of glucose and xylose under controlled pH conditions by Saccharomyces cerevisiae 424A(LNH-ST), a genetically engineered industrial yeast strain. Acetic acid concentrations of 7.5 and 15 g L⁻¹, representing the range of concentrations expected in actual biomass hydrolysates, were tested under controlled pH conditions of 5, 5.5, and 6. The presence of acetic acid in the fermentation media led to a significant decrease in the observed maximum cell biomass concentration. Glucose- and xylose-specific consumption rates decreased as the acetic acid concentration increased, with the inhibitory effect being more severe for xylose consumption. The ethanol production rates also decreased when acetic acid was present, but ethanol metabolic yields increased under the same conditions. The results also revealed that the inhibitory effect of acetic acid could be reduced by increasing media pH, thus confirming that the undissociated form of acetic acid is the inhibitory form of the molecule. |
doi_str_mv | 10.1111/j.1567-1364.2010.00623.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_733303977</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1567-1364.2010.00623.x</oup_id><sourcerecordid>2335085639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4803-eb5c18c652f398f94154389c3ab15d8a6a678df445ee3821eb6a17c8b8e392313</originalsourceid><addsrcrecordid>eNp1kcFu1DAQhiMEoqXwCmCJA6csdiaxHYkLqlqKVAmJ0gMna-JMdr1K4iVOyuY1eGKc3bIHEL7MaOb7f438JwkTfCXie79diUKqVIDMVxmPU85lBqv9k-T8tHh66gt5lrwIYcu5UJzr58lZxnOeqVKeJ7-umobsyHzD0NLobCyuZtjXbHfDfM_GDTHrGxo66kccXRxFdt1O1gc6cPu5XdrRMxo32PuWVTNDtqZ-8cO2nRn1a9cTDVSzMA7oDh53aO0GB9_NlgKzcfvggkN6mTxrsA306rFeJPfXV98ub9LbL58-X368TW2uOaRUFVZoK4usgVI3ZS6KHHRpAStR1BolSqXrJs8LItCZoEqiUFZXmqDMQMBF8u7ouxv8j4nCaDoXLLUt9uSnYBQAcCiViuTbv8itn4Y-HmcygILrQkIZqdeP1FR1VJvd4DocZvPnsyPw4Qj8dC3Np73gZgnVbM2Sl1myM0uo5hCq2Zvr719jE-VwlPtp9x9x-o84qt4cVQ16g-vBBXN_FwngQoPSqoTfRtatgg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2335085639</pqid></control><display><type>article</type><title>Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Casey, Elizabeth ; Sedlak, Miroslav ; Ho, Nancy W.Y ; Mosier, Nathan S</creator><creatorcontrib>Casey, Elizabeth ; Sedlak, Miroslav ; Ho, Nancy W.Y ; Mosier, Nathan S</creatorcontrib><description>A current challenge of the cellulosic ethanol industry is the effect of inhibitors present in biomass hydrolysates. Acetic acid is an example of one such inhibitor that is released during the pretreatment of hemicellulose. This study examined the effect of acetic acid on the cofermentation of glucose and xylose under controlled pH conditions by Saccharomyces cerevisiae 424A(LNH-ST), a genetically engineered industrial yeast strain. Acetic acid concentrations of 7.5 and 15 g L⁻¹, representing the range of concentrations expected in actual biomass hydrolysates, were tested under controlled pH conditions of 5, 5.5, and 6. The presence of acetic acid in the fermentation media led to a significant decrease in the observed maximum cell biomass concentration. Glucose- and xylose-specific consumption rates decreased as the acetic acid concentration increased, with the inhibitory effect being more severe for xylose consumption. The ethanol production rates also decreased when acetic acid was present, but ethanol metabolic yields increased under the same conditions. The results also revealed that the inhibitory effect of acetic acid could be reduced by increasing media pH, thus confirming that the undissociated form of acetic acid is the inhibitory form of the molecule.</description><identifier>ISSN: 1567-1356</identifier><identifier>EISSN: 1567-1364</identifier><identifier>DOI: 10.1111/j.1567-1364.2010.00623.x</identifier><identifier>PMID: 20402796</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Acetic acid ; Acetic Acid - toxicity ; Acids ; Biomass ; cellulose ; Ethanol ; Ethanol - metabolism ; Fermentation ; Fermentation - drug effects ; Genetic Engineering ; Glucose ; Glucose - metabolism ; Hemicellulose ; Hydrogen-Ion Concentration ; Hydrolysates ; Industrial Microbiology ; inhibition ; Metabolic Networks and Pathways - genetics ; pH effects ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth & development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Xylose ; Xylose - metabolism ; Yeast</subject><ispartof>FEMS yeast research, 2010-06, Vol.10 (4), p.385-393</ispartof><rights>2010 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved 2010</rights><rights>2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved</rights><rights>2010 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4803-eb5c18c652f398f94154389c3ab15d8a6a678df445ee3821eb6a17c8b8e392313</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1567-1364.2010.00623.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1567-1364.2010.00623.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20402796$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Casey, Elizabeth</creatorcontrib><creatorcontrib>Sedlak, Miroslav</creatorcontrib><creatorcontrib>Ho, Nancy W.Y</creatorcontrib><creatorcontrib>Mosier, Nathan S</creatorcontrib><title>Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae</title><title>FEMS yeast research</title><addtitle>FEMS Yeast Res</addtitle><description>A current challenge of the cellulosic ethanol industry is the effect of inhibitors present in biomass hydrolysates. Acetic acid is an example of one such inhibitor that is released during the pretreatment of hemicellulose. This study examined the effect of acetic acid on the cofermentation of glucose and xylose under controlled pH conditions by Saccharomyces cerevisiae 424A(LNH-ST), a genetically engineered industrial yeast strain. Acetic acid concentrations of 7.5 and 15 g L⁻¹, representing the range of concentrations expected in actual biomass hydrolysates, were tested under controlled pH conditions of 5, 5.5, and 6. The presence of acetic acid in the fermentation media led to a significant decrease in the observed maximum cell biomass concentration. Glucose- and xylose-specific consumption rates decreased as the acetic acid concentration increased, with the inhibitory effect being more severe for xylose consumption. The ethanol production rates also decreased when acetic acid was present, but ethanol metabolic yields increased under the same conditions. The results also revealed that the inhibitory effect of acetic acid could be reduced by increasing media pH, thus confirming that the undissociated form of acetic acid is the inhibitory form of the molecule.</description><subject>Acetic acid</subject><subject>Acetic Acid - toxicity</subject><subject>Acids</subject><subject>Biomass</subject><subject>cellulose</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Fermentation</subject><subject>Fermentation - drug effects</subject><subject>Genetic Engineering</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Hemicellulose</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysates</subject><subject>Industrial Microbiology</subject><subject>inhibition</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>pH effects</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth & development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Xylose</subject><subject>Xylose - metabolism</subject><subject>Yeast</subject><issn>1567-1356</issn><issn>1567-1364</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kcFu1DAQhiMEoqXwCmCJA6csdiaxHYkLqlqKVAmJ0gMna-JMdr1K4iVOyuY1eGKc3bIHEL7MaOb7f438JwkTfCXie79diUKqVIDMVxmPU85lBqv9k-T8tHh66gt5lrwIYcu5UJzr58lZxnOeqVKeJ7-umobsyHzD0NLobCyuZtjXbHfDfM_GDTHrGxo66kccXRxFdt1O1gc6cPu5XdrRMxo32PuWVTNDtqZ-8cO2nRn1a9cTDVSzMA7oDh53aO0GB9_NlgKzcfvggkN6mTxrsA306rFeJPfXV98ub9LbL58-X368TW2uOaRUFVZoK4usgVI3ZS6KHHRpAStR1BolSqXrJs8LItCZoEqiUFZXmqDMQMBF8u7ouxv8j4nCaDoXLLUt9uSnYBQAcCiViuTbv8itn4Y-HmcygILrQkIZqdeP1FR1VJvd4DocZvPnsyPw4Qj8dC3Np73gZgnVbM2Sl1myM0uo5hCq2Zvr719jE-VwlPtp9x9x-o84qt4cVQ16g-vBBXN_FwngQoPSqoTfRtatgg</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Casey, Elizabeth</creator><creator>Sedlak, Miroslav</creator><creator>Ho, Nancy W.Y</creator><creator>Mosier, Nathan S</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>201006</creationdate><title>Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae</title><author>Casey, Elizabeth ; Sedlak, Miroslav ; Ho, Nancy W.Y ; Mosier, Nathan S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4803-eb5c18c652f398f94154389c3ab15d8a6a678df445ee3821eb6a17c8b8e392313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Acetic acid</topic><topic>Acetic Acid - toxicity</topic><topic>Acids</topic><topic>Biomass</topic><topic>cellulose</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Fermentation</topic><topic>Fermentation - drug effects</topic><topic>Genetic Engineering</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Hemicellulose</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysates</topic><topic>Industrial Microbiology</topic><topic>inhibition</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>pH effects</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth & development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Xylose</topic><topic>Xylose - metabolism</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casey, Elizabeth</creatorcontrib><creatorcontrib>Sedlak, Miroslav</creatorcontrib><creatorcontrib>Ho, Nancy W.Y</creatorcontrib><creatorcontrib>Mosier, Nathan S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS yeast research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casey, Elizabeth</au><au>Sedlak, Miroslav</au><au>Ho, Nancy W.Y</au><au>Mosier, Nathan S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae</atitle><jtitle>FEMS yeast research</jtitle><addtitle>FEMS Yeast Res</addtitle><date>2010-06</date><risdate>2010</risdate><volume>10</volume><issue>4</issue><spage>385</spage><epage>393</epage><pages>385-393</pages><issn>1567-1356</issn><eissn>1567-1364</eissn><abstract>A current challenge of the cellulosic ethanol industry is the effect of inhibitors present in biomass hydrolysates. Acetic acid is an example of one such inhibitor that is released during the pretreatment of hemicellulose. This study examined the effect of acetic acid on the cofermentation of glucose and xylose under controlled pH conditions by Saccharomyces cerevisiae 424A(LNH-ST), a genetically engineered industrial yeast strain. Acetic acid concentrations of 7.5 and 15 g L⁻¹, representing the range of concentrations expected in actual biomass hydrolysates, were tested under controlled pH conditions of 5, 5.5, and 6. The presence of acetic acid in the fermentation media led to a significant decrease in the observed maximum cell biomass concentration. Glucose- and xylose-specific consumption rates decreased as the acetic acid concentration increased, with the inhibitory effect being more severe for xylose consumption. The ethanol production rates also decreased when acetic acid was present, but ethanol metabolic yields increased under the same conditions. The results also revealed that the inhibitory effect of acetic acid could be reduced by increasing media pH, thus confirming that the undissociated form of acetic acid is the inhibitory form of the molecule.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>20402796</pmid><doi>10.1111/j.1567-1364.2010.00623.x</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1567-1356 |
ispartof | FEMS yeast research, 2010-06, Vol.10 (4), p.385-393 |
issn | 1567-1356 1567-1364 |
language | eng |
recordid | cdi_proquest_miscellaneous_733303977 |
source | Oxford Journals Open Access Collection; MEDLINE; Wiley Online Library; Alma/SFX Local Collection |
subjects | Acetic acid Acetic Acid - toxicity Acids Biomass cellulose Ethanol Ethanol - metabolism Fermentation Fermentation - drug effects Genetic Engineering Glucose Glucose - metabolism Hemicellulose Hydrogen-Ion Concentration Hydrolysates Industrial Microbiology inhibition Metabolic Networks and Pathways - genetics pH effects Saccharomyces cerevisiae Saccharomyces cerevisiae - drug effects Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Xylose Xylose - metabolism Yeast |
title | Effect of acetic acid and pH on the cofermentation of glucose and xylose to ethanol by a genetically engineered strain of Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20acetic%20acid%20and%20pH%20on%20the%20cofermentation%20of%20glucose%20and%20xylose%20to%20ethanol%20by%20a%20genetically%20engineered%20strain%20of%20Saccharomyces%20cerevisiae&rft.jtitle=FEMS%20yeast%20research&rft.au=Casey,%20Elizabeth&rft.date=2010-06&rft.volume=10&rft.issue=4&rft.spage=385&rft.epage=393&rft.pages=385-393&rft.issn=1567-1356&rft.eissn=1567-1364&rft_id=info:doi/10.1111/j.1567-1364.2010.00623.x&rft_dat=%3Cproquest_pubme%3E2335085639%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2335085639&rft_id=info:pmid/20402796&rft_oup_id=10.1111/j.1567-1364.2010.00623.x&rfr_iscdi=true |