Temporal dynamics of mouse hippocampal clock gene expression support memory processing
Hippocampal plasticity and mnemonic processing exhibit a striking time‐of‐day dependence and likely implicate a temporally structured replay of memory traces. Molecular mechanisms fulfilling the requirements of sensing time and capturing time‐related information are coded in dynamics of so‐called cl...
Gespeichert in:
Veröffentlicht in: | Hippocampus 2010-03, Vol.20 (3), p.377-388 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 388 |
---|---|
container_issue | 3 |
container_start_page | 377 |
container_title | Hippocampus |
container_volume | 20 |
creator | Jilg, Antje Lesny, Sandra Peruzki, Natalie Schwegler, Herbert Selbach, Oliver Dehghani, Faramarz Stehle, Jörg H. |
description | Hippocampal plasticity and mnemonic processing exhibit a striking time‐of‐day dependence and likely implicate a temporally structured replay of memory traces. Molecular mechanisms fulfilling the requirements of sensing time and capturing time‐related information are coded in dynamics of so‐called clock genes and their protein products, first discovered and described in the hypothalamic suprachiasmatic nucleus. Using real‐time PCR and immunohistochemical analyses, we show that in wildtype mice core clock components (mPer1/PER1, mPer2/PER2, mCry1/CRY1, mCry2/CRY2, mClock/CLOCK, mBmal1/BMAL1) are expressed in neurons of all subregions of the hippocampus in a time‐locked fashion over a 24‐h (diurnal) day/night cycle. Temporal profiling of these transcriptional regulators reveals distinct and parallel peaks, at times when memory traces are usually formed and/or consolidated. The coordinated rhythmic expression of hippocampal clock gene expression is greatly disordered in mice deficient for the clock gene mPer1, a key player implicated in both, maintenance and adaptative plasticity of circadian clocks. Moreover, Per1‐knockout animals are severely handicapped in a hippocampus‐dependent long‐term spatial learning paradigm. We propose that the dynamics of hippocampal clock gene expression imprint a temporal structure on memory processing and shape at the same time the efficacy of behavioral learning. © 2009 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/hipo.20637 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733291191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733291191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4327-9954896d30825ec711eac0337c74fae2671c071b7f4ca8c041a78a484716a253</originalsourceid><addsrcrecordid>eNp9kE1PGzEQhq2qqFDopT-g8q0S0sKMvbteH2nEl4RIhCJ6tIwzS7es11s7EeTf12lSuHHyWPPMM5qXsa8IJwggTn91YzgRUEv1gR0g6KbA_Pm4qSsodC1xn31O6TcAYgXwie2jLqWqQByw-zn5MUTb88V6sL5ziYeW-7BKxLN3DM76MXddH9wTf6SBOL2MkVLqwsDTKhNxyT35ENd8jMFtOsPjEdtrbZ_oy-49ZPOL8_nkqriZXl5Pzm4KV0qhCq2rstH1QkIjKnIKkawDKZVTZWtJ1AodKHxQbels46BEqxpbNqXC2opKHrLvW23e_GdFaWl8lxz1vR0on2CUlEIjaszk8ZZ0MaQUqTVj7LyNa4NgNimaTYrmX4oZ_rbTrh48Ld7QXWwZwC3w3PW0fkdlrq5n0__SYjvTpSW9vM7Y-GRqlbXm5-2lmYOe6cmdMD_kX5q7jFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733291191</pqid></control><display><type>article</type><title>Temporal dynamics of mouse hippocampal clock gene expression support memory processing</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jilg, Antje ; Lesny, Sandra ; Peruzki, Natalie ; Schwegler, Herbert ; Selbach, Oliver ; Dehghani, Faramarz ; Stehle, Jörg H.</creator><creatorcontrib>Jilg, Antje ; Lesny, Sandra ; Peruzki, Natalie ; Schwegler, Herbert ; Selbach, Oliver ; Dehghani, Faramarz ; Stehle, Jörg H.</creatorcontrib><description>Hippocampal plasticity and mnemonic processing exhibit a striking time‐of‐day dependence and likely implicate a temporally structured replay of memory traces. Molecular mechanisms fulfilling the requirements of sensing time and capturing time‐related information are coded in dynamics of so‐called clock genes and their protein products, first discovered and described in the hypothalamic suprachiasmatic nucleus. Using real‐time PCR and immunohistochemical analyses, we show that in wildtype mice core clock components (mPer1/PER1, mPer2/PER2, mCry1/CRY1, mCry2/CRY2, mClock/CLOCK, mBmal1/BMAL1) are expressed in neurons of all subregions of the hippocampus in a time‐locked fashion over a 24‐h (diurnal) day/night cycle. Temporal profiling of these transcriptional regulators reveals distinct and parallel peaks, at times when memory traces are usually formed and/or consolidated. The coordinated rhythmic expression of hippocampal clock gene expression is greatly disordered in mice deficient for the clock gene mPer1, a key player implicated in both, maintenance and adaptative plasticity of circadian clocks. Moreover, Per1‐knockout animals are severely handicapped in a hippocampus‐dependent long‐term spatial learning paradigm. We propose that the dynamics of hippocampal clock gene expression imprint a temporal structure on memory processing and shape at the same time the efficacy of behavioral learning. © 2009 Wiley‐Liss, Inc.</description><identifier>ISSN: 1050-9631</identifier><identifier>EISSN: 1098-1063</identifier><identifier>DOI: 10.1002/hipo.20637</identifier><identifier>PMID: 19437502</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Animals ; ARNTL Transcription Factors - genetics ; ARNTL Transcription Factors - metabolism ; behavior ; Biological Clocks - genetics ; circadian ; Circadian Rhythm - genetics ; Circadian Rhythm Signaling Peptides and Proteins - genetics ; Circadian Rhythm Signaling Peptides and Proteins - metabolism ; CLOCK Proteins - genetics ; CLOCK Proteins - metabolism ; Cryptochromes - genetics ; Cryptochromes - metabolism ; Gene Expression Regulation - physiology ; Hippocampus - metabolism ; Hippocampus - physiopathology ; Immunohistochemistry ; Male ; Memory - physiology ; Memory Disorders - genetics ; Mice ; Mice, Inbred C3H ; Mice, Knockout ; PER1 ; Period Circadian Proteins - genetics ; Period Circadian Proteins - metabolism ; radial arm ; Reverse Transcriptase Polymerase Chain Reaction ; rhythm ; RNA, Messenger - metabolism ; Time Factors ; Time Perception - physiology ; Transcription Factors - genetics ; Transcription Factors - metabolism</subject><ispartof>Hippocampus, 2010-03, Vol.20 (3), p.377-388</ispartof><rights>Copyright © 2009 Wiley‐Liss, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4327-9954896d30825ec711eac0337c74fae2671c071b7f4ca8c041a78a484716a253</citedby><cites>FETCH-LOGICAL-c4327-9954896d30825ec711eac0337c74fae2671c071b7f4ca8c041a78a484716a253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhipo.20637$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhipo.20637$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19437502$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jilg, Antje</creatorcontrib><creatorcontrib>Lesny, Sandra</creatorcontrib><creatorcontrib>Peruzki, Natalie</creatorcontrib><creatorcontrib>Schwegler, Herbert</creatorcontrib><creatorcontrib>Selbach, Oliver</creatorcontrib><creatorcontrib>Dehghani, Faramarz</creatorcontrib><creatorcontrib>Stehle, Jörg H.</creatorcontrib><title>Temporal dynamics of mouse hippocampal clock gene expression support memory processing</title><title>Hippocampus</title><addtitle>Hippocampus</addtitle><description>Hippocampal plasticity and mnemonic processing exhibit a striking time‐of‐day dependence and likely implicate a temporally structured replay of memory traces. Molecular mechanisms fulfilling the requirements of sensing time and capturing time‐related information are coded in dynamics of so‐called clock genes and their protein products, first discovered and described in the hypothalamic suprachiasmatic nucleus. Using real‐time PCR and immunohistochemical analyses, we show that in wildtype mice core clock components (mPer1/PER1, mPer2/PER2, mCry1/CRY1, mCry2/CRY2, mClock/CLOCK, mBmal1/BMAL1) are expressed in neurons of all subregions of the hippocampus in a time‐locked fashion over a 24‐h (diurnal) day/night cycle. Temporal profiling of these transcriptional regulators reveals distinct and parallel peaks, at times when memory traces are usually formed and/or consolidated. The coordinated rhythmic expression of hippocampal clock gene expression is greatly disordered in mice deficient for the clock gene mPer1, a key player implicated in both, maintenance and adaptative plasticity of circadian clocks. Moreover, Per1‐knockout animals are severely handicapped in a hippocampus‐dependent long‐term spatial learning paradigm. We propose that the dynamics of hippocampal clock gene expression imprint a temporal structure on memory processing and shape at the same time the efficacy of behavioral learning. © 2009 Wiley‐Liss, Inc.</description><subject>Animals</subject><subject>ARNTL Transcription Factors - genetics</subject><subject>ARNTL Transcription Factors - metabolism</subject><subject>behavior</subject><subject>Biological Clocks - genetics</subject><subject>circadian</subject><subject>Circadian Rhythm - genetics</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - genetics</subject><subject>Circadian Rhythm Signaling Peptides and Proteins - metabolism</subject><subject>CLOCK Proteins - genetics</subject><subject>CLOCK Proteins - metabolism</subject><subject>Cryptochromes - genetics</subject><subject>Cryptochromes - metabolism</subject><subject>Gene Expression Regulation - physiology</subject><subject>Hippocampus - metabolism</subject><subject>Hippocampus - physiopathology</subject><subject>Immunohistochemistry</subject><subject>Male</subject><subject>Memory - physiology</subject><subject>Memory Disorders - genetics</subject><subject>Mice</subject><subject>Mice, Inbred C3H</subject><subject>Mice, Knockout</subject><subject>PER1</subject><subject>Period Circadian Proteins - genetics</subject><subject>Period Circadian Proteins - metabolism</subject><subject>radial arm</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>rhythm</subject><subject>RNA, Messenger - metabolism</subject><subject>Time Factors</subject><subject>Time Perception - physiology</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><issn>1050-9631</issn><issn>1098-1063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1PGzEQhq2qqFDopT-g8q0S0sKMvbteH2nEl4RIhCJ6tIwzS7es11s7EeTf12lSuHHyWPPMM5qXsa8IJwggTn91YzgRUEv1gR0g6KbA_Pm4qSsodC1xn31O6TcAYgXwie2jLqWqQByw-zn5MUTb88V6sL5ziYeW-7BKxLN3DM76MXddH9wTf6SBOL2MkVLqwsDTKhNxyT35ENd8jMFtOsPjEdtrbZ_oy-49ZPOL8_nkqriZXl5Pzm4KV0qhCq2rstH1QkIjKnIKkawDKZVTZWtJ1AodKHxQbels46BEqxpbNqXC2opKHrLvW23e_GdFaWl8lxz1vR0on2CUlEIjaszk8ZZ0MaQUqTVj7LyNa4NgNimaTYrmX4oZ_rbTrh48Ld7QXWwZwC3w3PW0fkdlrq5n0__SYjvTpSW9vM7Y-GRqlbXm5-2lmYOe6cmdMD_kX5q7jFw</recordid><startdate>201003</startdate><enddate>201003</enddate><creator>Jilg, Antje</creator><creator>Lesny, Sandra</creator><creator>Peruzki, Natalie</creator><creator>Schwegler, Herbert</creator><creator>Selbach, Oliver</creator><creator>Dehghani, Faramarz</creator><creator>Stehle, Jörg H.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201003</creationdate><title>Temporal dynamics of mouse hippocampal clock gene expression support memory processing</title><author>Jilg, Antje ; Lesny, Sandra ; Peruzki, Natalie ; Schwegler, Herbert ; Selbach, Oliver ; Dehghani, Faramarz ; Stehle, Jörg H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4327-9954896d30825ec711eac0337c74fae2671c071b7f4ca8c041a78a484716a253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animals</topic><topic>ARNTL Transcription Factors - genetics</topic><topic>ARNTL Transcription Factors - metabolism</topic><topic>behavior</topic><topic>Biological Clocks - genetics</topic><topic>circadian</topic><topic>Circadian Rhythm - genetics</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - genetics</topic><topic>Circadian Rhythm Signaling Peptides and Proteins - metabolism</topic><topic>CLOCK Proteins - genetics</topic><topic>CLOCK Proteins - metabolism</topic><topic>Cryptochromes - genetics</topic><topic>Cryptochromes - metabolism</topic><topic>Gene Expression Regulation - physiology</topic><topic>Hippocampus - metabolism</topic><topic>Hippocampus - physiopathology</topic><topic>Immunohistochemistry</topic><topic>Male</topic><topic>Memory - physiology</topic><topic>Memory Disorders - genetics</topic><topic>Mice</topic><topic>Mice, Inbred C3H</topic><topic>Mice, Knockout</topic><topic>PER1</topic><topic>Period Circadian Proteins - genetics</topic><topic>Period Circadian Proteins - metabolism</topic><topic>radial arm</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>rhythm</topic><topic>RNA, Messenger - metabolism</topic><topic>Time Factors</topic><topic>Time Perception - physiology</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jilg, Antje</creatorcontrib><creatorcontrib>Lesny, Sandra</creatorcontrib><creatorcontrib>Peruzki, Natalie</creatorcontrib><creatorcontrib>Schwegler, Herbert</creatorcontrib><creatorcontrib>Selbach, Oliver</creatorcontrib><creatorcontrib>Dehghani, Faramarz</creatorcontrib><creatorcontrib>Stehle, Jörg H.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Hippocampus</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jilg, Antje</au><au>Lesny, Sandra</au><au>Peruzki, Natalie</au><au>Schwegler, Herbert</au><au>Selbach, Oliver</au><au>Dehghani, Faramarz</au><au>Stehle, Jörg H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temporal dynamics of mouse hippocampal clock gene expression support memory processing</atitle><jtitle>Hippocampus</jtitle><addtitle>Hippocampus</addtitle><date>2010-03</date><risdate>2010</risdate><volume>20</volume><issue>3</issue><spage>377</spage><epage>388</epage><pages>377-388</pages><issn>1050-9631</issn><eissn>1098-1063</eissn><abstract>Hippocampal plasticity and mnemonic processing exhibit a striking time‐of‐day dependence and likely implicate a temporally structured replay of memory traces. Molecular mechanisms fulfilling the requirements of sensing time and capturing time‐related information are coded in dynamics of so‐called clock genes and their protein products, first discovered and described in the hypothalamic suprachiasmatic nucleus. Using real‐time PCR and immunohistochemical analyses, we show that in wildtype mice core clock components (mPer1/PER1, mPer2/PER2, mCry1/CRY1, mCry2/CRY2, mClock/CLOCK, mBmal1/BMAL1) are expressed in neurons of all subregions of the hippocampus in a time‐locked fashion over a 24‐h (diurnal) day/night cycle. Temporal profiling of these transcriptional regulators reveals distinct and parallel peaks, at times when memory traces are usually formed and/or consolidated. The coordinated rhythmic expression of hippocampal clock gene expression is greatly disordered in mice deficient for the clock gene mPer1, a key player implicated in both, maintenance and adaptative plasticity of circadian clocks. Moreover, Per1‐knockout animals are severely handicapped in a hippocampus‐dependent long‐term spatial learning paradigm. We propose that the dynamics of hippocampal clock gene expression imprint a temporal structure on memory processing and shape at the same time the efficacy of behavioral learning. © 2009 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19437502</pmid><doi>10.1002/hipo.20637</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1050-9631 |
ispartof | Hippocampus, 2010-03, Vol.20 (3), p.377-388 |
issn | 1050-9631 1098-1063 |
language | eng |
recordid | cdi_proquest_miscellaneous_733291191 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals ARNTL Transcription Factors - genetics ARNTL Transcription Factors - metabolism behavior Biological Clocks - genetics circadian Circadian Rhythm - genetics Circadian Rhythm Signaling Peptides and Proteins - genetics Circadian Rhythm Signaling Peptides and Proteins - metabolism CLOCK Proteins - genetics CLOCK Proteins - metabolism Cryptochromes - genetics Cryptochromes - metabolism Gene Expression Regulation - physiology Hippocampus - metabolism Hippocampus - physiopathology Immunohistochemistry Male Memory - physiology Memory Disorders - genetics Mice Mice, Inbred C3H Mice, Knockout PER1 Period Circadian Proteins - genetics Period Circadian Proteins - metabolism radial arm Reverse Transcriptase Polymerase Chain Reaction rhythm RNA, Messenger - metabolism Time Factors Time Perception - physiology Transcription Factors - genetics Transcription Factors - metabolism |
title | Temporal dynamics of mouse hippocampal clock gene expression support memory processing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A25%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temporal%20dynamics%20of%20mouse%20hippocampal%20clock%20gene%20expression%20support%20memory%20processing&rft.jtitle=Hippocampus&rft.au=Jilg,%20Antje&rft.date=2010-03&rft.volume=20&rft.issue=3&rft.spage=377&rft.epage=388&rft.pages=377-388&rft.issn=1050-9631&rft.eissn=1098-1063&rft_id=info:doi/10.1002/hipo.20637&rft_dat=%3Cproquest_cross%3E733291191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733291191&rft_id=info:pmid/19437502&rfr_iscdi=true |