Gene function analysis in complex data sets using ErmineJ

ErmineJ is software for the analysis of functionally interesting patterns in large gene lists drawn from gene expression profiling data or other high-throughput genomics studies. It can be used by biologists with no bioinformatics background to conduct sophisticated analyses of gene sets with multip...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature protocols 2010-06, Vol.5 (6), p.1148-1159
Hauptverfasser: Gillis, Jesse, Mistry, Meeta, Pavlidis, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1159
container_issue 6
container_start_page 1148
container_title Nature protocols
container_volume 5
creator Gillis, Jesse
Mistry, Meeta
Pavlidis, Paul
description ErmineJ is software for the analysis of functionally interesting patterns in large gene lists drawn from gene expression profiling data or other high-throughput genomics studies. It can be used by biologists with no bioinformatics background to conduct sophisticated analyses of gene sets with multiple methods. It allows users to assess whether microarray data or other gene lists are enriched for a particular pathway or gene class. This protocol provides steps on how to format data files, determine analysis type, create custom gene sets and perform specific analyses—including overrepresentation analysis, genes score resampling and correlation resampling. ErmineJ differs from other methods in providing a rapid, simple and customizable analysis, including high-level visualization through its graphical user interface and scripting tools through its command-line interface, as well as custom gene sets and a variety of statistical methods. The protocol should take approximately 1 h, including (one-time) installation and setup.
doi_str_mv 10.1038/nprot.2010.78
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_733286330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A306859632</galeid><sourcerecordid>A306859632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c595t-53c69abe5e6261708a4a439577af9d20a6870bcae2696d87573ac6c9727777963</originalsourceid><addsrcrecordid>eNp90s1rFDEUAPBQKrZWj15loAcVmTUfk6_jstRaKRa00mPIZt4sKTOZNclA-9-b7Yd1pW1ySDLzy0teeAi9JXhGMFOfwzqOeUZxWUu1g_aJ5LimUuvdm3lTU6L0HnqV0iXGjWRCvkR7FHOmqcb7SB9DgKqbgst-DJUNtr9OPlU-VG4c1j1cVa3NtkqQUzUlH1bVURx8gG-v0YvO9gne3I0H6NeXo_PF1_r07PhkMT-tHdc815w5oe0SOAgqiMTKNrZhmktpO91SbIWSeOksUKFFqySXzDrhtKSyNC3YAXp_G7ck-nuClM3gk4O-twHGKRnJGFWCMVzkh2clKedSpogihR7-Ry_HKZbki2JU0IYIyh7UyvZgfOjGHK3bBDVzhoXi5Xq0qNkjqvQWBu_GAJ0v37c2fNzaUEyGq7yyU0rm5OePbfvpaTs_v1h839b1rXZxTClCZ9bRDzZeG4LNplzMTbmYTbkYqYp_d_cM03KA9q--r4-H3FL5FVYQ_3mnRyP-AY-qxOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1326241623</pqid></control><display><type>article</type><title>Gene function analysis in complex data sets using ErmineJ</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Gillis, Jesse ; Mistry, Meeta ; Pavlidis, Paul</creator><creatorcontrib>Gillis, Jesse ; Mistry, Meeta ; Pavlidis, Paul</creatorcontrib><description>ErmineJ is software for the analysis of functionally interesting patterns in large gene lists drawn from gene expression profiling data or other high-throughput genomics studies. It can be used by biologists with no bioinformatics background to conduct sophisticated analyses of gene sets with multiple methods. It allows users to assess whether microarray data or other gene lists are enriched for a particular pathway or gene class. This protocol provides steps on how to format data files, determine analysis type, create custom gene sets and perform specific analyses—including overrepresentation analysis, genes score resampling and correlation resampling. ErmineJ differs from other methods in providing a rapid, simple and customizable analysis, including high-level visualization through its graphical user interface and scripting tools through its command-line interface, as well as custom gene sets and a variety of statistical methods. The protocol should take approximately 1 h, including (one-time) installation and setup.</description><identifier>ISSN: 1754-2189</identifier><identifier>EISSN: 1750-2799</identifier><identifier>DOI: 10.1038/nprot.2010.78</identifier><identifier>PMID: 20539290</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/794 ; 631/208/191 ; Algorithms ; Analytical Chemistry ; Animals ; Applications software ; Automatic Data Processing ; Bioinformatics ; Biological Techniques ; Biologists ; Biomedical and Life Sciences ; Computational Biology - methods ; Computational Biology/Bioinformatics ; Databases, Genetic ; DNA microarrays ; Gene expression ; Gene Expression Profiling - statistics &amp; numerical data ; Genomics ; Genomics - statistics &amp; numerical data ; Humans ; Life Sciences ; Methods ; Microarrays ; Oligonucleotide Array Sequence Analysis - statistics &amp; numerical data ; Organic Chemistry ; Physiological aspects ; Protocol ; Software ; Statistical methods ; User interface ; User-Computer Interface</subject><ispartof>Nature protocols, 2010-06, Vol.5 (6), p.1148-1159</ispartof><rights>Springer Nature Limited 2010</rights><rights>COPYRIGHT 2010 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c595t-53c69abe5e6261708a4a439577af9d20a6870bcae2696d87573ac6c9727777963</citedby><cites>FETCH-LOGICAL-c595t-53c69abe5e6261708a4a439577af9d20a6870bcae2696d87573ac6c9727777963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nprot.2010.78$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nprot.2010.78$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20539290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gillis, Jesse</creatorcontrib><creatorcontrib>Mistry, Meeta</creatorcontrib><creatorcontrib>Pavlidis, Paul</creatorcontrib><title>Gene function analysis in complex data sets using ErmineJ</title><title>Nature protocols</title><addtitle>Nat Protoc</addtitle><addtitle>Nat Protoc</addtitle><description>ErmineJ is software for the analysis of functionally interesting patterns in large gene lists drawn from gene expression profiling data or other high-throughput genomics studies. It can be used by biologists with no bioinformatics background to conduct sophisticated analyses of gene sets with multiple methods. It allows users to assess whether microarray data or other gene lists are enriched for a particular pathway or gene class. This protocol provides steps on how to format data files, determine analysis type, create custom gene sets and perform specific analyses—including overrepresentation analysis, genes score resampling and correlation resampling. ErmineJ differs from other methods in providing a rapid, simple and customizable analysis, including high-level visualization through its graphical user interface and scripting tools through its command-line interface, as well as custom gene sets and a variety of statistical methods. The protocol should take approximately 1 h, including (one-time) installation and setup.</description><subject>631/1647/794</subject><subject>631/208/191</subject><subject>Algorithms</subject><subject>Analytical Chemistry</subject><subject>Animals</subject><subject>Applications software</subject><subject>Automatic Data Processing</subject><subject>Bioinformatics</subject><subject>Biological Techniques</subject><subject>Biologists</subject><subject>Biomedical and Life Sciences</subject><subject>Computational Biology - methods</subject><subject>Computational Biology/Bioinformatics</subject><subject>Databases, Genetic</subject><subject>DNA microarrays</subject><subject>Gene expression</subject><subject>Gene Expression Profiling - statistics &amp; numerical data</subject><subject>Genomics</subject><subject>Genomics - statistics &amp; numerical data</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Methods</subject><subject>Microarrays</subject><subject>Oligonucleotide Array Sequence Analysis - statistics &amp; numerical data</subject><subject>Organic Chemistry</subject><subject>Physiological aspects</subject><subject>Protocol</subject><subject>Software</subject><subject>Statistical methods</subject><subject>User interface</subject><subject>User-Computer Interface</subject><issn>1754-2189</issn><issn>1750-2799</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp90s1rFDEUAPBQKrZWj15loAcVmTUfk6_jstRaKRa00mPIZt4sKTOZNclA-9-b7Yd1pW1ySDLzy0teeAi9JXhGMFOfwzqOeUZxWUu1g_aJ5LimUuvdm3lTU6L0HnqV0iXGjWRCvkR7FHOmqcb7SB9DgKqbgst-DJUNtr9OPlU-VG4c1j1cVa3NtkqQUzUlH1bVURx8gG-v0YvO9gne3I0H6NeXo_PF1_r07PhkMT-tHdc815w5oe0SOAgqiMTKNrZhmktpO91SbIWSeOksUKFFqySXzDrhtKSyNC3YAXp_G7ck-nuClM3gk4O-twHGKRnJGFWCMVzkh2clKedSpogihR7-Ry_HKZbki2JU0IYIyh7UyvZgfOjGHK3bBDVzhoXi5Xq0qNkjqvQWBu_GAJ0v37c2fNzaUEyGq7yyU0rm5OePbfvpaTs_v1h839b1rXZxTClCZ9bRDzZeG4LNplzMTbmYTbkYqYp_d_cM03KA9q--r4-H3FL5FVYQ_3mnRyP-AY-qxOg</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Gillis, Jesse</creator><creator>Mistry, Meeta</creator><creator>Pavlidis, Paul</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope></search><sort><creationdate>201006</creationdate><title>Gene function analysis in complex data sets using ErmineJ</title><author>Gillis, Jesse ; Mistry, Meeta ; Pavlidis, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c595t-53c69abe5e6261708a4a439577af9d20a6870bcae2696d87573ac6c9727777963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>631/1647/794</topic><topic>631/208/191</topic><topic>Algorithms</topic><topic>Analytical Chemistry</topic><topic>Animals</topic><topic>Applications software</topic><topic>Automatic Data Processing</topic><topic>Bioinformatics</topic><topic>Biological Techniques</topic><topic>Biologists</topic><topic>Biomedical and Life Sciences</topic><topic>Computational Biology - methods</topic><topic>Computational Biology/Bioinformatics</topic><topic>Databases, Genetic</topic><topic>DNA microarrays</topic><topic>Gene expression</topic><topic>Gene Expression Profiling - statistics &amp; numerical data</topic><topic>Genomics</topic><topic>Genomics - statistics &amp; numerical data</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Methods</topic><topic>Microarrays</topic><topic>Oligonucleotide Array Sequence Analysis - statistics &amp; numerical data</topic><topic>Organic Chemistry</topic><topic>Physiological aspects</topic><topic>Protocol</topic><topic>Software</topic><topic>Statistical methods</topic><topic>User interface</topic><topic>User-Computer Interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gillis, Jesse</creatorcontrib><creatorcontrib>Mistry, Meeta</creatorcontrib><creatorcontrib>Pavlidis, Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature protocols</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gillis, Jesse</au><au>Mistry, Meeta</au><au>Pavlidis, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gene function analysis in complex data sets using ErmineJ</atitle><jtitle>Nature protocols</jtitle><stitle>Nat Protoc</stitle><addtitle>Nat Protoc</addtitle><date>2010-06</date><risdate>2010</risdate><volume>5</volume><issue>6</issue><spage>1148</spage><epage>1159</epage><pages>1148-1159</pages><issn>1754-2189</issn><eissn>1750-2799</eissn><abstract>ErmineJ is software for the analysis of functionally interesting patterns in large gene lists drawn from gene expression profiling data or other high-throughput genomics studies. It can be used by biologists with no bioinformatics background to conduct sophisticated analyses of gene sets with multiple methods. It allows users to assess whether microarray data or other gene lists are enriched for a particular pathway or gene class. This protocol provides steps on how to format data files, determine analysis type, create custom gene sets and perform specific analyses—including overrepresentation analysis, genes score resampling and correlation resampling. ErmineJ differs from other methods in providing a rapid, simple and customizable analysis, including high-level visualization through its graphical user interface and scripting tools through its command-line interface, as well as custom gene sets and a variety of statistical methods. The protocol should take approximately 1 h, including (one-time) installation and setup.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>20539290</pmid><doi>10.1038/nprot.2010.78</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1754-2189
ispartof Nature protocols, 2010-06, Vol.5 (6), p.1148-1159
issn 1754-2189
1750-2799
language eng
recordid cdi_proquest_miscellaneous_733286330
source MEDLINE; Nature; Springer Nature - Complete Springer Journals
subjects 631/1647/794
631/208/191
Algorithms
Analytical Chemistry
Animals
Applications software
Automatic Data Processing
Bioinformatics
Biological Techniques
Biologists
Biomedical and Life Sciences
Computational Biology - methods
Computational Biology/Bioinformatics
Databases, Genetic
DNA microarrays
Gene expression
Gene Expression Profiling - statistics & numerical data
Genomics
Genomics - statistics & numerical data
Humans
Life Sciences
Methods
Microarrays
Oligonucleotide Array Sequence Analysis - statistics & numerical data
Organic Chemistry
Physiological aspects
Protocol
Software
Statistical methods
User interface
User-Computer Interface
title Gene function analysis in complex data sets using ErmineJ
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gene%20function%20analysis%20in%20complex%20data%20sets%20using%20ErmineJ&rft.jtitle=Nature%20protocols&rft.au=Gillis,%20Jesse&rft.date=2010-06&rft.volume=5&rft.issue=6&rft.spage=1148&rft.epage=1159&rft.pages=1148-1159&rft.issn=1754-2189&rft.eissn=1750-2799&rft_id=info:doi/10.1038/nprot.2010.78&rft_dat=%3Cgale_proqu%3EA306859632%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1326241623&rft_id=info:pmid/20539290&rft_galeid=A306859632&rfr_iscdi=true