Accuracy of fish-eye lens models
The majority of computer vision applications assumes that the camera adheres to the pinhole camera model. However, most optical systems will introduce undesirable effects. By far, the most evident of these effects is radial lensing, which is particularly noticeable in fish-eye camera systems, where...
Gespeichert in:
Veröffentlicht in: | Applied Optics 2010-06, Vol.49 (17), p.3338-3347 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The majority of computer vision applications assumes that the camera adheres to the pinhole camera model. However, most optical systems will introduce undesirable effects. By far, the most evident of these effects is radial lensing, which is particularly noticeable in fish-eye camera systems, where the effect is relatively extreme. Several authors have developed models of fish-eye lenses that can be used to describe the fish-eye displacement. Our aim is to evaluate the accuracy of several of these models. Thus, we present a method by which the lens curve of a fish-eye camera can be extracted using well-founded assumptions and perspective methods. Several of the models from the literature are examined against this empirically derived curve. |
---|---|
ISSN: | 0003-6935 2155-3165 1539-4522 |
DOI: | 10.1364/AO.49.003338 |