Predicting caloric and feed efficiency in turkeys using the group method of data handling-type neural networks

Neural networks (NN) are a relatively new option to model growth in animal production systems. One self-organizing submodel of artificial NN is the group method of data handling (GMDH)-type NN. The use of such self-organizing networks has led to successful application of the GMDH algorithm over a br...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Poultry science 2010-06, Vol.89 (6), p.1325-1331
Hauptverfasser: Mottaghitalab, M, Faridi, A, Darmani-Kuhi, H, France, J, Ahmadi, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1331
container_issue 6
container_start_page 1325
container_title Poultry science
container_volume 89
creator Mottaghitalab, M
Faridi, A
Darmani-Kuhi, H
France, J
Ahmadi, H
description Neural networks (NN) are a relatively new option to model growth in animal production systems. One self-organizing submodel of artificial NN is the group method of data handling (GMDH)-type NN. The use of such self-organizing networks has led to successful application of the GMDH algorithm over a broad range of areas in engineering, science, and economics. The present study aimed to apply the GMDH-type NN to predict caloric efficiency (CE, g of gain/kcal of caloric intake) and feed efficiency (FE, kg of gain/kg of feed intake) in tom and hen turkeys fed diets containing different energy and amino acid levels. Involved effective input parameters in prediction of CE and FE were age, dietary ME, CP, Met, and Lys. Quantitative examination of the goodness of fit for the predictive models was made using R² and error measurement indices commonly used to evaluate forecasting models. Statistical performance of the developed GMDH-type NN models revealed close agreement between observed and predicted values of CE and FE. In conclusion, using such powerful models can enhance our ability to predict economic traits, make precise prediction of nutrition requirements, and achieve optimal performance in poultry production.
doi_str_mv 10.3382/ps.2009-00490
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733279583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.3382/ps.2009-00490</oup_id><sourcerecordid>733279583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-dda935555cac80dbd2e631c05e38f1774f11e9653f526cd92fb3de29f7d1c2113</originalsourceid><addsrcrecordid>eNp1kD1vFDEQQC0EIkegpAV30DjM2LdfJYr4kiIlUkht-ezxncneerG9Qvfv8XEJXUYjTfPmFY-xtwgXSvXy05wvJMAgANYDPGMrbGQjFHb4nK0AlBRNN-AZe5XzLwCJbdu9ZGcS1i20Pa7YdJPIBVvCtOXWjDEFy83kuCdynLwPNtBkDzxMvCzpng6ZL_kIlx3xbYrLzPdUdtHx6LkzxfBdfR8rIcphJj7RksxYT_kT031-zV54M2Z683DP2d3XLz8vv4ur628_Lj9fCav6vgjnzKCaOtbYHtzGSWoVWmhI9R67bu0RaWgb5RvZWjdIv1GO5OA7h1YiqnP24eSdU_y9UC56H7KlcTQTxSXrTinZDU2vKilOpE0x50RezynsTTpoBH0srOesj4X1v8KVf_dgXjZ7cv_px6QV-HgCapunXOLR9f6EehO12aaQ9d2tBFSA_RpV3b_TJ42H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733279583</pqid></control><display><type>article</type><title>Predicting caloric and feed efficiency in turkeys using the group method of data handling-type neural networks</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Mottaghitalab, M ; Faridi, A ; Darmani-Kuhi, H ; France, J ; Ahmadi, H</creator><creatorcontrib>Mottaghitalab, M ; Faridi, A ; Darmani-Kuhi, H ; France, J ; Ahmadi, H</creatorcontrib><description>Neural networks (NN) are a relatively new option to model growth in animal production systems. One self-organizing submodel of artificial NN is the group method of data handling (GMDH)-type NN. The use of such self-organizing networks has led to successful application of the GMDH algorithm over a broad range of areas in engineering, science, and economics. The present study aimed to apply the GMDH-type NN to predict caloric efficiency (CE, g of gain/kcal of caloric intake) and feed efficiency (FE, kg of gain/kg of feed intake) in tom and hen turkeys fed diets containing different energy and amino acid levels. Involved effective input parameters in prediction of CE and FE were age, dietary ME, CP, Met, and Lys. Quantitative examination of the goodness of fit for the predictive models was made using R² and error measurement indices commonly used to evaluate forecasting models. Statistical performance of the developed GMDH-type NN models revealed close agreement between observed and predicted values of CE and FE. In conclusion, using such powerful models can enhance our ability to predict economic traits, make precise prediction of nutrition requirements, and achieve optimal performance in poultry production.</description><identifier>ISSN: 0032-5791</identifier><identifier>EISSN: 1525-3171</identifier><identifier>DOI: 10.3382/ps.2009-00490</identifier><identifier>PMID: 20460681</identifier><language>eng</language><publisher>Oxford, UK: Poultry Science Association</publisher><subject>amino acid composition ; Animal Feed - analysis ; Animal Nutritional Physiological Phenomena ; Animals ; body weight ; calibration ; Computer Simulation ; Diet - veterinary ; energy intake ; Energy Metabolism ; feed conversion ; feed intake ; females ; gender differences ; liveweight gain ; males ; model validation ; Models, Biological ; neural networks ; Neural Networks, Computer ; prediction ; simulation models ; turkeys ; Turkeys - growth &amp; development</subject><ispartof>Poultry science, 2010-06, Vol.89 (6), p.1325-1331</ispartof><rights>2010 Poultry Science Association Inc. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-dda935555cac80dbd2e631c05e38f1774f11e9653f526cd92fb3de29f7d1c2113</citedby><cites>FETCH-LOGICAL-c388t-dda935555cac80dbd2e631c05e38f1774f11e9653f526cd92fb3de29f7d1c2113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20460681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mottaghitalab, M</creatorcontrib><creatorcontrib>Faridi, A</creatorcontrib><creatorcontrib>Darmani-Kuhi, H</creatorcontrib><creatorcontrib>France, J</creatorcontrib><creatorcontrib>Ahmadi, H</creatorcontrib><title>Predicting caloric and feed efficiency in turkeys using the group method of data handling-type neural networks</title><title>Poultry science</title><addtitle>Poult Sci</addtitle><description>Neural networks (NN) are a relatively new option to model growth in animal production systems. One self-organizing submodel of artificial NN is the group method of data handling (GMDH)-type NN. The use of such self-organizing networks has led to successful application of the GMDH algorithm over a broad range of areas in engineering, science, and economics. The present study aimed to apply the GMDH-type NN to predict caloric efficiency (CE, g of gain/kcal of caloric intake) and feed efficiency (FE, kg of gain/kg of feed intake) in tom and hen turkeys fed diets containing different energy and amino acid levels. Involved effective input parameters in prediction of CE and FE were age, dietary ME, CP, Met, and Lys. Quantitative examination of the goodness of fit for the predictive models was made using R² and error measurement indices commonly used to evaluate forecasting models. Statistical performance of the developed GMDH-type NN models revealed close agreement between observed and predicted values of CE and FE. In conclusion, using such powerful models can enhance our ability to predict economic traits, make precise prediction of nutrition requirements, and achieve optimal performance in poultry production.</description><subject>amino acid composition</subject><subject>Animal Feed - analysis</subject><subject>Animal Nutritional Physiological Phenomena</subject><subject>Animals</subject><subject>body weight</subject><subject>calibration</subject><subject>Computer Simulation</subject><subject>Diet - veterinary</subject><subject>energy intake</subject><subject>Energy Metabolism</subject><subject>feed conversion</subject><subject>feed intake</subject><subject>females</subject><subject>gender differences</subject><subject>liveweight gain</subject><subject>males</subject><subject>model validation</subject><subject>Models, Biological</subject><subject>neural networks</subject><subject>Neural Networks, Computer</subject><subject>prediction</subject><subject>simulation models</subject><subject>turkeys</subject><subject>Turkeys - growth &amp; development</subject><issn>0032-5791</issn><issn>1525-3171</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1vFDEQQC0EIkegpAV30DjM2LdfJYr4kiIlUkht-ezxncneerG9Qvfv8XEJXUYjTfPmFY-xtwgXSvXy05wvJMAgANYDPGMrbGQjFHb4nK0AlBRNN-AZe5XzLwCJbdu9ZGcS1i20Pa7YdJPIBVvCtOXWjDEFy83kuCdynLwPNtBkDzxMvCzpng6ZL_kIlx3xbYrLzPdUdtHx6LkzxfBdfR8rIcphJj7RksxYT_kT031-zV54M2Z683DP2d3XLz8vv4ur628_Lj9fCav6vgjnzKCaOtbYHtzGSWoVWmhI9R67bu0RaWgb5RvZWjdIv1GO5OA7h1YiqnP24eSdU_y9UC56H7KlcTQTxSXrTinZDU2vKilOpE0x50RezynsTTpoBH0srOesj4X1v8KVf_dgXjZ7cv_px6QV-HgCapunXOLR9f6EehO12aaQ9d2tBFSA_RpV3b_TJ42H</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Mottaghitalab, M</creator><creator>Faridi, A</creator><creator>Darmani-Kuhi, H</creator><creator>France, J</creator><creator>Ahmadi, H</creator><general>Poultry Science Association</general><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100601</creationdate><title>Predicting caloric and feed efficiency in turkeys using the group method of data handling-type neural networks</title><author>Mottaghitalab, M ; Faridi, A ; Darmani-Kuhi, H ; France, J ; Ahmadi, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-dda935555cac80dbd2e631c05e38f1774f11e9653f526cd92fb3de29f7d1c2113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>amino acid composition</topic><topic>Animal Feed - analysis</topic><topic>Animal Nutritional Physiological Phenomena</topic><topic>Animals</topic><topic>body weight</topic><topic>calibration</topic><topic>Computer Simulation</topic><topic>Diet - veterinary</topic><topic>energy intake</topic><topic>Energy Metabolism</topic><topic>feed conversion</topic><topic>feed intake</topic><topic>females</topic><topic>gender differences</topic><topic>liveweight gain</topic><topic>males</topic><topic>model validation</topic><topic>Models, Biological</topic><topic>neural networks</topic><topic>Neural Networks, Computer</topic><topic>prediction</topic><topic>simulation models</topic><topic>turkeys</topic><topic>Turkeys - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mottaghitalab, M</creatorcontrib><creatorcontrib>Faridi, A</creatorcontrib><creatorcontrib>Darmani-Kuhi, H</creatorcontrib><creatorcontrib>France, J</creatorcontrib><creatorcontrib>Ahmadi, H</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Poultry science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mottaghitalab, M</au><au>Faridi, A</au><au>Darmani-Kuhi, H</au><au>France, J</au><au>Ahmadi, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting caloric and feed efficiency in turkeys using the group method of data handling-type neural networks</atitle><jtitle>Poultry science</jtitle><addtitle>Poult Sci</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>89</volume><issue>6</issue><spage>1325</spage><epage>1331</epage><pages>1325-1331</pages><issn>0032-5791</issn><eissn>1525-3171</eissn><abstract>Neural networks (NN) are a relatively new option to model growth in animal production systems. One self-organizing submodel of artificial NN is the group method of data handling (GMDH)-type NN. The use of such self-organizing networks has led to successful application of the GMDH algorithm over a broad range of areas in engineering, science, and economics. The present study aimed to apply the GMDH-type NN to predict caloric efficiency (CE, g of gain/kcal of caloric intake) and feed efficiency (FE, kg of gain/kg of feed intake) in tom and hen turkeys fed diets containing different energy and amino acid levels. Involved effective input parameters in prediction of CE and FE were age, dietary ME, CP, Met, and Lys. Quantitative examination of the goodness of fit for the predictive models was made using R² and error measurement indices commonly used to evaluate forecasting models. Statistical performance of the developed GMDH-type NN models revealed close agreement between observed and predicted values of CE and FE. In conclusion, using such powerful models can enhance our ability to predict economic traits, make precise prediction of nutrition requirements, and achieve optimal performance in poultry production.</abstract><cop>Oxford, UK</cop><pub>Poultry Science Association</pub><pmid>20460681</pmid><doi>10.3382/ps.2009-00490</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-5791
ispartof Poultry science, 2010-06, Vol.89 (6), p.1325-1331
issn 0032-5791
1525-3171
language eng
recordid cdi_proquest_miscellaneous_733279583
source MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects amino acid composition
Animal Feed - analysis
Animal Nutritional Physiological Phenomena
Animals
body weight
calibration
Computer Simulation
Diet - veterinary
energy intake
Energy Metabolism
feed conversion
feed intake
females
gender differences
liveweight gain
males
model validation
Models, Biological
neural networks
Neural Networks, Computer
prediction
simulation models
turkeys
Turkeys - growth & development
title Predicting caloric and feed efficiency in turkeys using the group method of data handling-type neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20caloric%20and%20feed%20efficiency%20in%20turkeys%20using%20the%20group%20method%20of%20data%20handling-type%20neural%20networks&rft.jtitle=Poultry%20science&rft.au=Mottaghitalab,%20M&rft.date=2010-06-01&rft.volume=89&rft.issue=6&rft.spage=1325&rft.epage=1331&rft.pages=1325-1331&rft.issn=0032-5791&rft.eissn=1525-3171&rft_id=info:doi/10.3382/ps.2009-00490&rft_dat=%3Cproquest_cross%3E733279583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733279583&rft_id=info:pmid/20460681&rft_oup_id=10.3382/ps.2009-00490&rfr_iscdi=true