Predicting caloric and feed efficiency in turkeys using the group method of data handling-type neural networks
Neural networks (NN) are a relatively new option to model growth in animal production systems. One self-organizing submodel of artificial NN is the group method of data handling (GMDH)-type NN. The use of such self-organizing networks has led to successful application of the GMDH algorithm over a br...
Gespeichert in:
Veröffentlicht in: | Poultry science 2010-06, Vol.89 (6), p.1325-1331 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1331 |
---|---|
container_issue | 6 |
container_start_page | 1325 |
container_title | Poultry science |
container_volume | 89 |
creator | Mottaghitalab, M Faridi, A Darmani-Kuhi, H France, J Ahmadi, H |
description | Neural networks (NN) are a relatively new option to model growth in animal production systems. One self-organizing submodel of artificial NN is the group method of data handling (GMDH)-type NN. The use of such self-organizing networks has led to successful application of the GMDH algorithm over a broad range of areas in engineering, science, and economics. The present study aimed to apply the GMDH-type NN to predict caloric efficiency (CE, g of gain/kcal of caloric intake) and feed efficiency (FE, kg of gain/kg of feed intake) in tom and hen turkeys fed diets containing different energy and amino acid levels. Involved effective input parameters in prediction of CE and FE were age, dietary ME, CP, Met, and Lys. Quantitative examination of the goodness of fit for the predictive models was made using R² and error measurement indices commonly used to evaluate forecasting models. Statistical performance of the developed GMDH-type NN models revealed close agreement between observed and predicted values of CE and FE. In conclusion, using such powerful models can enhance our ability to predict economic traits, make precise prediction of nutrition requirements, and achieve optimal performance in poultry production. |
doi_str_mv | 10.3382/ps.2009-00490 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733279583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.3382/ps.2009-00490</oup_id><sourcerecordid>733279583</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-dda935555cac80dbd2e631c05e38f1774f11e9653f526cd92fb3de29f7d1c2113</originalsourceid><addsrcrecordid>eNp1kD1vFDEQQC0EIkegpAV30DjM2LdfJYr4kiIlUkht-ezxncneerG9Qvfv8XEJXUYjTfPmFY-xtwgXSvXy05wvJMAgANYDPGMrbGQjFHb4nK0AlBRNN-AZe5XzLwCJbdu9ZGcS1i20Pa7YdJPIBVvCtOXWjDEFy83kuCdynLwPNtBkDzxMvCzpng6ZL_kIlx3xbYrLzPdUdtHx6LkzxfBdfR8rIcphJj7RksxYT_kT031-zV54M2Z683DP2d3XLz8vv4ur628_Lj9fCav6vgjnzKCaOtbYHtzGSWoVWmhI9R67bu0RaWgb5RvZWjdIv1GO5OA7h1YiqnP24eSdU_y9UC56H7KlcTQTxSXrTinZDU2vKilOpE0x50RezynsTTpoBH0srOesj4X1v8KVf_dgXjZ7cv_px6QV-HgCapunXOLR9f6EehO12aaQ9d2tBFSA_RpV3b_TJ42H</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733279583</pqid></control><display><type>article</type><title>Predicting caloric and feed efficiency in turkeys using the group method of data handling-type neural networks</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Mottaghitalab, M ; Faridi, A ; Darmani-Kuhi, H ; France, J ; Ahmadi, H</creator><creatorcontrib>Mottaghitalab, M ; Faridi, A ; Darmani-Kuhi, H ; France, J ; Ahmadi, H</creatorcontrib><description>Neural networks (NN) are a relatively new option to model growth in animal production systems. One self-organizing submodel of artificial NN is the group method of data handling (GMDH)-type NN. The use of such self-organizing networks has led to successful application of the GMDH algorithm over a broad range of areas in engineering, science, and economics. The present study aimed to apply the GMDH-type NN to predict caloric efficiency (CE, g of gain/kcal of caloric intake) and feed efficiency (FE, kg of gain/kg of feed intake) in tom and hen turkeys fed diets containing different energy and amino acid levels. Involved effective input parameters in prediction of CE and FE were age, dietary ME, CP, Met, and Lys. Quantitative examination of the goodness of fit for the predictive models was made using R² and error measurement indices commonly used to evaluate forecasting models. Statistical performance of the developed GMDH-type NN models revealed close agreement between observed and predicted values of CE and FE. In conclusion, using such powerful models can enhance our ability to predict economic traits, make precise prediction of nutrition requirements, and achieve optimal performance in poultry production.</description><identifier>ISSN: 0032-5791</identifier><identifier>EISSN: 1525-3171</identifier><identifier>DOI: 10.3382/ps.2009-00490</identifier><identifier>PMID: 20460681</identifier><language>eng</language><publisher>Oxford, UK: Poultry Science Association</publisher><subject>amino acid composition ; Animal Feed - analysis ; Animal Nutritional Physiological Phenomena ; Animals ; body weight ; calibration ; Computer Simulation ; Diet - veterinary ; energy intake ; Energy Metabolism ; feed conversion ; feed intake ; females ; gender differences ; liveweight gain ; males ; model validation ; Models, Biological ; neural networks ; Neural Networks, Computer ; prediction ; simulation models ; turkeys ; Turkeys - growth & development</subject><ispartof>Poultry science, 2010-06, Vol.89 (6), p.1325-1331</ispartof><rights>2010 Poultry Science Association Inc. 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-dda935555cac80dbd2e631c05e38f1774f11e9653f526cd92fb3de29f7d1c2113</citedby><cites>FETCH-LOGICAL-c388t-dda935555cac80dbd2e631c05e38f1774f11e9653f526cd92fb3de29f7d1c2113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20460681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mottaghitalab, M</creatorcontrib><creatorcontrib>Faridi, A</creatorcontrib><creatorcontrib>Darmani-Kuhi, H</creatorcontrib><creatorcontrib>France, J</creatorcontrib><creatorcontrib>Ahmadi, H</creatorcontrib><title>Predicting caloric and feed efficiency in turkeys using the group method of data handling-type neural networks</title><title>Poultry science</title><addtitle>Poult Sci</addtitle><description>Neural networks (NN) are a relatively new option to model growth in animal production systems. One self-organizing submodel of artificial NN is the group method of data handling (GMDH)-type NN. The use of such self-organizing networks has led to successful application of the GMDH algorithm over a broad range of areas in engineering, science, and economics. The present study aimed to apply the GMDH-type NN to predict caloric efficiency (CE, g of gain/kcal of caloric intake) and feed efficiency (FE, kg of gain/kg of feed intake) in tom and hen turkeys fed diets containing different energy and amino acid levels. Involved effective input parameters in prediction of CE and FE were age, dietary ME, CP, Met, and Lys. Quantitative examination of the goodness of fit for the predictive models was made using R² and error measurement indices commonly used to evaluate forecasting models. Statistical performance of the developed GMDH-type NN models revealed close agreement between observed and predicted values of CE and FE. In conclusion, using such powerful models can enhance our ability to predict economic traits, make precise prediction of nutrition requirements, and achieve optimal performance in poultry production.</description><subject>amino acid composition</subject><subject>Animal Feed - analysis</subject><subject>Animal Nutritional Physiological Phenomena</subject><subject>Animals</subject><subject>body weight</subject><subject>calibration</subject><subject>Computer Simulation</subject><subject>Diet - veterinary</subject><subject>energy intake</subject><subject>Energy Metabolism</subject><subject>feed conversion</subject><subject>feed intake</subject><subject>females</subject><subject>gender differences</subject><subject>liveweight gain</subject><subject>males</subject><subject>model validation</subject><subject>Models, Biological</subject><subject>neural networks</subject><subject>Neural Networks, Computer</subject><subject>prediction</subject><subject>simulation models</subject><subject>turkeys</subject><subject>Turkeys - growth & development</subject><issn>0032-5791</issn><issn>1525-3171</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1vFDEQQC0EIkegpAV30DjM2LdfJYr4kiIlUkht-ezxncneerG9Qvfv8XEJXUYjTfPmFY-xtwgXSvXy05wvJMAgANYDPGMrbGQjFHb4nK0AlBRNN-AZe5XzLwCJbdu9ZGcS1i20Pa7YdJPIBVvCtOXWjDEFy83kuCdynLwPNtBkDzxMvCzpng6ZL_kIlx3xbYrLzPdUdtHx6LkzxfBdfR8rIcphJj7RksxYT_kT031-zV54M2Z683DP2d3XLz8vv4ur628_Lj9fCav6vgjnzKCaOtbYHtzGSWoVWmhI9R67bu0RaWgb5RvZWjdIv1GO5OA7h1YiqnP24eSdU_y9UC56H7KlcTQTxSXrTinZDU2vKilOpE0x50RezynsTTpoBH0srOesj4X1v8KVf_dgXjZ7cv_px6QV-HgCapunXOLR9f6EehO12aaQ9d2tBFSA_RpV3b_TJ42H</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Mottaghitalab, M</creator><creator>Faridi, A</creator><creator>Darmani-Kuhi, H</creator><creator>France, J</creator><creator>Ahmadi, H</creator><general>Poultry Science Association</general><general>Oxford University Press</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100601</creationdate><title>Predicting caloric and feed efficiency in turkeys using the group method of data handling-type neural networks</title><author>Mottaghitalab, M ; Faridi, A ; Darmani-Kuhi, H ; France, J ; Ahmadi, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-dda935555cac80dbd2e631c05e38f1774f11e9653f526cd92fb3de29f7d1c2113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>amino acid composition</topic><topic>Animal Feed - analysis</topic><topic>Animal Nutritional Physiological Phenomena</topic><topic>Animals</topic><topic>body weight</topic><topic>calibration</topic><topic>Computer Simulation</topic><topic>Diet - veterinary</topic><topic>energy intake</topic><topic>Energy Metabolism</topic><topic>feed conversion</topic><topic>feed intake</topic><topic>females</topic><topic>gender differences</topic><topic>liveweight gain</topic><topic>males</topic><topic>model validation</topic><topic>Models, Biological</topic><topic>neural networks</topic><topic>Neural Networks, Computer</topic><topic>prediction</topic><topic>simulation models</topic><topic>turkeys</topic><topic>Turkeys - growth & development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mottaghitalab, M</creatorcontrib><creatorcontrib>Faridi, A</creatorcontrib><creatorcontrib>Darmani-Kuhi, H</creatorcontrib><creatorcontrib>France, J</creatorcontrib><creatorcontrib>Ahmadi, H</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Poultry science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mottaghitalab, M</au><au>Faridi, A</au><au>Darmani-Kuhi, H</au><au>France, J</au><au>Ahmadi, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting caloric and feed efficiency in turkeys using the group method of data handling-type neural networks</atitle><jtitle>Poultry science</jtitle><addtitle>Poult Sci</addtitle><date>2010-06-01</date><risdate>2010</risdate><volume>89</volume><issue>6</issue><spage>1325</spage><epage>1331</epage><pages>1325-1331</pages><issn>0032-5791</issn><eissn>1525-3171</eissn><abstract>Neural networks (NN) are a relatively new option to model growth in animal production systems. One self-organizing submodel of artificial NN is the group method of data handling (GMDH)-type NN. The use of such self-organizing networks has led to successful application of the GMDH algorithm over a broad range of areas in engineering, science, and economics. The present study aimed to apply the GMDH-type NN to predict caloric efficiency (CE, g of gain/kcal of caloric intake) and feed efficiency (FE, kg of gain/kg of feed intake) in tom and hen turkeys fed diets containing different energy and amino acid levels. Involved effective input parameters in prediction of CE and FE were age, dietary ME, CP, Met, and Lys. Quantitative examination of the goodness of fit for the predictive models was made using R² and error measurement indices commonly used to evaluate forecasting models. Statistical performance of the developed GMDH-type NN models revealed close agreement between observed and predicted values of CE and FE. In conclusion, using such powerful models can enhance our ability to predict economic traits, make precise prediction of nutrition requirements, and achieve optimal performance in poultry production.</abstract><cop>Oxford, UK</cop><pub>Poultry Science Association</pub><pmid>20460681</pmid><doi>10.3382/ps.2009-00490</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-5791 |
ispartof | Poultry science, 2010-06, Vol.89 (6), p.1325-1331 |
issn | 0032-5791 1525-3171 |
language | eng |
recordid | cdi_proquest_miscellaneous_733279583 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | amino acid composition Animal Feed - analysis Animal Nutritional Physiological Phenomena Animals body weight calibration Computer Simulation Diet - veterinary energy intake Energy Metabolism feed conversion feed intake females gender differences liveweight gain males model validation Models, Biological neural networks Neural Networks, Computer prediction simulation models turkeys Turkeys - growth & development |
title | Predicting caloric and feed efficiency in turkeys using the group method of data handling-type neural networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A00%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20caloric%20and%20feed%20efficiency%20in%20turkeys%20using%20the%20group%20method%20of%20data%20handling-type%20neural%20networks&rft.jtitle=Poultry%20science&rft.au=Mottaghitalab,%20M&rft.date=2010-06-01&rft.volume=89&rft.issue=6&rft.spage=1325&rft.epage=1331&rft.pages=1325-1331&rft.issn=0032-5791&rft.eissn=1525-3171&rft_id=info:doi/10.3382/ps.2009-00490&rft_dat=%3Cproquest_cross%3E733279583%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733279583&rft_id=info:pmid/20460681&rft_oup_id=10.3382/ps.2009-00490&rfr_iscdi=true |