Polycyanurate Nanorod Arrays for Optical-Waveguide-Based Biosensing
We demonstrate high-sensitivity biosensing by optical waveguide spectroscopy (OWS) at visible wavelengths using aligned polycyanurate thermoset nanorods (PCNs) arranged in extended arrays as waveguides. The PCNs formed by thermal polymerization of a cyanate ester monomer in self-ordered nanoporous a...
Gespeichert in:
Veröffentlicht in: | Nano letters 2010-06, Vol.10 (6), p.2173-2177 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2177 |
---|---|
container_issue | 6 |
container_start_page | 2173 |
container_title | Nano letters |
container_volume | 10 |
creator | Gitsas, Antonis Yameen, Basit Lazzara, Thomas Dominic Steinhart, Martin Duran, Hatice Knoll, Wolfgang |
description | We demonstrate high-sensitivity biosensing by optical waveguide spectroscopy (OWS) at visible wavelengths using aligned polycyanurate thermoset nanorods (PCNs) arranged in extended arrays as waveguides. The PCNs formed by thermal polymerization of a cyanate ester monomer in self-ordered nanoporous alumina templates were 60 nm in diameter and 650 nm in length. Subtle refractive index changes of the medium surrounding the nanorods could be detected by monitoring the angular shifts of waveguiding modes. The sensing figure of merit thus achieved amounted to 196 reciprocal refractive index units and is, therefore, higher than that of other sensors based on angular modulation, while the configuration used here is eligible for further surface functionalization. Kinetics of the binding of taurine to the surface cyanate groups of the PCNs was monitored by OWS. Thus, modified PCNs bearing sulfonic acid groups at their surfaces were obtained. PCN arrays may represent a versatile platform for the design of biosensors. |
doi_str_mv | 10.1021/nl1009102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733261908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733261908</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-84ab699070f10396c82e1b50f48142165870612edd2545452b28421dfb953a6c3</originalsourceid><addsrcrecordid>eNpt0E1LAzEQBuAgiq3Vg39A9iLiYXWS7OexLX5BsR4Uj8tski1btklNdoX996a0rheZwwzhYSa8hFxSuKPA6L1uKEDuxyMypjGHMMlzdjzMWTQiZ86twSMewykZMYhZmnM6JvM30_SiR91ZbFXwitpYI4Optdi7oDI2WG7bWmATfuK3WnW1VOEMnZLBrDZOaVfr1Tk5qbBx6uLQJ-Tj8eF9_hwulk8v8-kiRB5FbZhFWPqPQQoVBZ4nImOKljFUUUYjRpM4SyGhTEnJ4sgXK1nm32VV5jHHRPAJudnv3Vrz1SnXFpvaCdU0qJXpXJFyzhKaQ-bl7V4Ka5yzqiq2tt6g7QsKxS6yYojM26vD1q7cKDnI34w8uD4AdD6IyqIWtftzzF_cycGhcMXadFb7MP45-AOU53yE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733261908</pqid></control><display><type>article</type><title>Polycyanurate Nanorod Arrays for Optical-Waveguide-Based Biosensing</title><source>MEDLINE</source><source>ACS Publications</source><creator>Gitsas, Antonis ; Yameen, Basit ; Lazzara, Thomas Dominic ; Steinhart, Martin ; Duran, Hatice ; Knoll, Wolfgang</creator><creatorcontrib>Gitsas, Antonis ; Yameen, Basit ; Lazzara, Thomas Dominic ; Steinhart, Martin ; Duran, Hatice ; Knoll, Wolfgang</creatorcontrib><description>We demonstrate high-sensitivity biosensing by optical waveguide spectroscopy (OWS) at visible wavelengths using aligned polycyanurate thermoset nanorods (PCNs) arranged in extended arrays as waveguides. The PCNs formed by thermal polymerization of a cyanate ester monomer in self-ordered nanoporous alumina templates were 60 nm in diameter and 650 nm in length. Subtle refractive index changes of the medium surrounding the nanorods could be detected by monitoring the angular shifts of waveguiding modes. The sensing figure of merit thus achieved amounted to 196 reciprocal refractive index units and is, therefore, higher than that of other sensors based on angular modulation, while the configuration used here is eligible for further surface functionalization. Kinetics of the binding of taurine to the surface cyanate groups of the PCNs was monitored by OWS. Thus, modified PCNs bearing sulfonic acid groups at their surfaces were obtained. PCN arrays may represent a versatile platform for the design of biosensors.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl1009102</identifier><identifier>PMID: 20527931</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biosensing Techniques ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Kinetics ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; Nanotubes - chemistry ; Physics ; Polymers - chemistry ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Surface Properties ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Triazines - chemistry</subject><ispartof>Nano letters, 2010-06, Vol.10 (6), p.2173-2177</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a344t-84ab699070f10396c82e1b50f48142165870612edd2545452b28421dfb953a6c3</citedby><cites>FETCH-LOGICAL-a344t-84ab699070f10396c82e1b50f48142165870612edd2545452b28421dfb953a6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl1009102$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl1009102$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22908279$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20527931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gitsas, Antonis</creatorcontrib><creatorcontrib>Yameen, Basit</creatorcontrib><creatorcontrib>Lazzara, Thomas Dominic</creatorcontrib><creatorcontrib>Steinhart, Martin</creatorcontrib><creatorcontrib>Duran, Hatice</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><title>Polycyanurate Nanorod Arrays for Optical-Waveguide-Based Biosensing</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We demonstrate high-sensitivity biosensing by optical waveguide spectroscopy (OWS) at visible wavelengths using aligned polycyanurate thermoset nanorods (PCNs) arranged in extended arrays as waveguides. The PCNs formed by thermal polymerization of a cyanate ester monomer in self-ordered nanoporous alumina templates were 60 nm in diameter and 650 nm in length. Subtle refractive index changes of the medium surrounding the nanorods could be detected by monitoring the angular shifts of waveguiding modes. The sensing figure of merit thus achieved amounted to 196 reciprocal refractive index units and is, therefore, higher than that of other sensors based on angular modulation, while the configuration used here is eligible for further surface functionalization. Kinetics of the binding of taurine to the surface cyanate groups of the PCNs was monitored by OWS. Thus, modified PCNs bearing sulfonic acid groups at their surfaces were obtained. PCN arrays may represent a versatile platform for the design of biosensors.</description><subject>Biosensing Techniques</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Kinetics</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>Nanotubes - chemistry</subject><subject>Physics</subject><subject>Polymers - chemistry</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Surface Properties</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Triazines - chemistry</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1LAzEQBuAgiq3Vg39A9iLiYXWS7OexLX5BsR4Uj8tski1btklNdoX996a0rheZwwzhYSa8hFxSuKPA6L1uKEDuxyMypjGHMMlzdjzMWTQiZ86twSMewykZMYhZmnM6JvM30_SiR91ZbFXwitpYI4Optdi7oDI2WG7bWmATfuK3WnW1VOEMnZLBrDZOaVfr1Tk5qbBx6uLQJ-Tj8eF9_hwulk8v8-kiRB5FbZhFWPqPQQoVBZ4nImOKljFUUUYjRpM4SyGhTEnJ4sgXK1nm32VV5jHHRPAJudnv3Vrz1SnXFpvaCdU0qJXpXJFyzhKaQ-bl7V4Ka5yzqiq2tt6g7QsKxS6yYojM26vD1q7cKDnI34w8uD4AdD6IyqIWtftzzF_cycGhcMXadFb7MP45-AOU53yE</recordid><startdate>20100609</startdate><enddate>20100609</enddate><creator>Gitsas, Antonis</creator><creator>Yameen, Basit</creator><creator>Lazzara, Thomas Dominic</creator><creator>Steinhart, Martin</creator><creator>Duran, Hatice</creator><creator>Knoll, Wolfgang</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100609</creationdate><title>Polycyanurate Nanorod Arrays for Optical-Waveguide-Based Biosensing</title><author>Gitsas, Antonis ; Yameen, Basit ; Lazzara, Thomas Dominic ; Steinhart, Martin ; Duran, Hatice ; Knoll, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-84ab699070f10396c82e1b50f48142165870612edd2545452b28421dfb953a6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biosensing Techniques</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Kinetics</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>Nanotubes - chemistry</topic><topic>Physics</topic><topic>Polymers - chemistry</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Surface Properties</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Triazines - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gitsas, Antonis</creatorcontrib><creatorcontrib>Yameen, Basit</creatorcontrib><creatorcontrib>Lazzara, Thomas Dominic</creatorcontrib><creatorcontrib>Steinhart, Martin</creatorcontrib><creatorcontrib>Duran, Hatice</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gitsas, Antonis</au><au>Yameen, Basit</au><au>Lazzara, Thomas Dominic</au><au>Steinhart, Martin</au><au>Duran, Hatice</au><au>Knoll, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polycyanurate Nanorod Arrays for Optical-Waveguide-Based Biosensing</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-06-09</date><risdate>2010</risdate><volume>10</volume><issue>6</issue><spage>2173</spage><epage>2177</epage><pages>2173-2177</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We demonstrate high-sensitivity biosensing by optical waveguide spectroscopy (OWS) at visible wavelengths using aligned polycyanurate thermoset nanorods (PCNs) arranged in extended arrays as waveguides. The PCNs formed by thermal polymerization of a cyanate ester monomer in self-ordered nanoporous alumina templates were 60 nm in diameter and 650 nm in length. Subtle refractive index changes of the medium surrounding the nanorods could be detected by monitoring the angular shifts of waveguiding modes. The sensing figure of merit thus achieved amounted to 196 reciprocal refractive index units and is, therefore, higher than that of other sensors based on angular modulation, while the configuration used here is eligible for further surface functionalization. Kinetics of the binding of taurine to the surface cyanate groups of the PCNs was monitored by OWS. Thus, modified PCNs bearing sulfonic acid groups at their surfaces were obtained. PCN arrays may represent a versatile platform for the design of biosensors.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20527931</pmid><doi>10.1021/nl1009102</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2010-06, Vol.10 (6), p.2173-2177 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_733261908 |
source | MEDLINE; ACS Publications |
subjects | Biosensing Techniques Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Exact sciences and technology General equipment and techniques Instruments, apparatus, components and techniques common to several branches of physics and astronomy Kinetics Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Materials science Nanocrystalline materials Nanoscale materials and structures: fabrication and characterization Nanotubes Nanotubes - chemistry Physics Polymers - chemistry Sensors (chemical, optical, electrical, movement, gas, etc.) remote sensing Surface Properties Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Triazines - chemistry |
title | Polycyanurate Nanorod Arrays for Optical-Waveguide-Based Biosensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polycyanurate%20Nanorod%20Arrays%20for%20Optical-Waveguide-Based%20Biosensing&rft.jtitle=Nano%20letters&rft.au=Gitsas,%20Antonis&rft.date=2010-06-09&rft.volume=10&rft.issue=6&rft.spage=2173&rft.epage=2177&rft.pages=2173-2177&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl1009102&rft_dat=%3Cproquest_cross%3E733261908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733261908&rft_id=info:pmid/20527931&rfr_iscdi=true |