Polycyanurate Nanorod Arrays for Optical-Waveguide-Based Biosensing

We demonstrate high-sensitivity biosensing by optical waveguide spectroscopy (OWS) at visible wavelengths using aligned polycyanurate thermoset nanorods (PCNs) arranged in extended arrays as waveguides. The PCNs formed by thermal polymerization of a cyanate ester monomer in self-ordered nanoporous a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2010-06, Vol.10 (6), p.2173-2177
Hauptverfasser: Gitsas, Antonis, Yameen, Basit, Lazzara, Thomas Dominic, Steinhart, Martin, Duran, Hatice, Knoll, Wolfgang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2177
container_issue 6
container_start_page 2173
container_title Nano letters
container_volume 10
creator Gitsas, Antonis
Yameen, Basit
Lazzara, Thomas Dominic
Steinhart, Martin
Duran, Hatice
Knoll, Wolfgang
description We demonstrate high-sensitivity biosensing by optical waveguide spectroscopy (OWS) at visible wavelengths using aligned polycyanurate thermoset nanorods (PCNs) arranged in extended arrays as waveguides. The PCNs formed by thermal polymerization of a cyanate ester monomer in self-ordered nanoporous alumina templates were 60 nm in diameter and 650 nm in length. Subtle refractive index changes of the medium surrounding the nanorods could be detected by monitoring the angular shifts of waveguiding modes. The sensing figure of merit thus achieved amounted to 196 reciprocal refractive index units and is, therefore, higher than that of other sensors based on angular modulation, while the configuration used here is eligible for further surface functionalization. Kinetics of the binding of taurine to the surface cyanate groups of the PCNs was monitored by OWS. Thus, modified PCNs bearing sulfonic acid groups at their surfaces were obtained. PCN arrays may represent a versatile platform for the design of biosensors.
doi_str_mv 10.1021/nl1009102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733261908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733261908</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-84ab699070f10396c82e1b50f48142165870612edd2545452b28421dfb953a6c3</originalsourceid><addsrcrecordid>eNpt0E1LAzEQBuAgiq3Vg39A9iLiYXWS7OexLX5BsR4Uj8tski1btklNdoX996a0rheZwwzhYSa8hFxSuKPA6L1uKEDuxyMypjGHMMlzdjzMWTQiZ86twSMewykZMYhZmnM6JvM30_SiR91ZbFXwitpYI4Optdi7oDI2WG7bWmATfuK3WnW1VOEMnZLBrDZOaVfr1Tk5qbBx6uLQJ-Tj8eF9_hwulk8v8-kiRB5FbZhFWPqPQQoVBZ4nImOKljFUUUYjRpM4SyGhTEnJ4sgXK1nm32VV5jHHRPAJudnv3Vrz1SnXFpvaCdU0qJXpXJFyzhKaQ-bl7V4Ka5yzqiq2tt6g7QsKxS6yYojM26vD1q7cKDnI34w8uD4AdD6IyqIWtftzzF_cycGhcMXadFb7MP45-AOU53yE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733261908</pqid></control><display><type>article</type><title>Polycyanurate Nanorod Arrays for Optical-Waveguide-Based Biosensing</title><source>MEDLINE</source><source>ACS Publications</source><creator>Gitsas, Antonis ; Yameen, Basit ; Lazzara, Thomas Dominic ; Steinhart, Martin ; Duran, Hatice ; Knoll, Wolfgang</creator><creatorcontrib>Gitsas, Antonis ; Yameen, Basit ; Lazzara, Thomas Dominic ; Steinhart, Martin ; Duran, Hatice ; Knoll, Wolfgang</creatorcontrib><description>We demonstrate high-sensitivity biosensing by optical waveguide spectroscopy (OWS) at visible wavelengths using aligned polycyanurate thermoset nanorods (PCNs) arranged in extended arrays as waveguides. The PCNs formed by thermal polymerization of a cyanate ester monomer in self-ordered nanoporous alumina templates were 60 nm in diameter and 650 nm in length. Subtle refractive index changes of the medium surrounding the nanorods could be detected by monitoring the angular shifts of waveguiding modes. The sensing figure of merit thus achieved amounted to 196 reciprocal refractive index units and is, therefore, higher than that of other sensors based on angular modulation, while the configuration used here is eligible for further surface functionalization. Kinetics of the binding of taurine to the surface cyanate groups of the PCNs was monitored by OWS. Thus, modified PCNs bearing sulfonic acid groups at their surfaces were obtained. PCN arrays may represent a versatile platform for the design of biosensors.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl1009102</identifier><identifier>PMID: 20527931</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Biosensing Techniques ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; General equipment and techniques ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; Kinetics ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Nanocrystalline materials ; Nanoscale materials and structures: fabrication and characterization ; Nanotubes ; Nanotubes - chemistry ; Physics ; Polymers - chemistry ; Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing ; Surface Properties ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Triazines - chemistry</subject><ispartof>Nano letters, 2010-06, Vol.10 (6), p.2173-2177</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a344t-84ab699070f10396c82e1b50f48142165870612edd2545452b28421dfb953a6c3</citedby><cites>FETCH-LOGICAL-a344t-84ab699070f10396c82e1b50f48142165870612edd2545452b28421dfb953a6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nl1009102$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nl1009102$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22908279$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20527931$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gitsas, Antonis</creatorcontrib><creatorcontrib>Yameen, Basit</creatorcontrib><creatorcontrib>Lazzara, Thomas Dominic</creatorcontrib><creatorcontrib>Steinhart, Martin</creatorcontrib><creatorcontrib>Duran, Hatice</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><title>Polycyanurate Nanorod Arrays for Optical-Waveguide-Based Biosensing</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We demonstrate high-sensitivity biosensing by optical waveguide spectroscopy (OWS) at visible wavelengths using aligned polycyanurate thermoset nanorods (PCNs) arranged in extended arrays as waveguides. The PCNs formed by thermal polymerization of a cyanate ester monomer in self-ordered nanoporous alumina templates were 60 nm in diameter and 650 nm in length. Subtle refractive index changes of the medium surrounding the nanorods could be detected by monitoring the angular shifts of waveguiding modes. The sensing figure of merit thus achieved amounted to 196 reciprocal refractive index units and is, therefore, higher than that of other sensors based on angular modulation, while the configuration used here is eligible for further surface functionalization. Kinetics of the binding of taurine to the surface cyanate groups of the PCNs was monitored by OWS. Thus, modified PCNs bearing sulfonic acid groups at their surfaces were obtained. PCN arrays may represent a versatile platform for the design of biosensors.</description><subject>Biosensing Techniques</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>General equipment and techniques</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>Kinetics</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanotubes</subject><subject>Nanotubes - chemistry</subject><subject>Physics</subject><subject>Polymers - chemistry</subject><subject>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</subject><subject>Surface Properties</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Triazines - chemistry</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0E1LAzEQBuAgiq3Vg39A9iLiYXWS7OexLX5BsR4Uj8tski1btklNdoX996a0rheZwwzhYSa8hFxSuKPA6L1uKEDuxyMypjGHMMlzdjzMWTQiZ86twSMewykZMYhZmnM6JvM30_SiR91ZbFXwitpYI4Optdi7oDI2WG7bWmATfuK3WnW1VOEMnZLBrDZOaVfr1Tk5qbBx6uLQJ-Tj8eF9_hwulk8v8-kiRB5FbZhFWPqPQQoVBZ4nImOKljFUUUYjRpM4SyGhTEnJ4sgXK1nm32VV5jHHRPAJudnv3Vrz1SnXFpvaCdU0qJXpXJFyzhKaQ-bl7V4Ka5yzqiq2tt6g7QsKxS6yYojM26vD1q7cKDnI34w8uD4AdD6IyqIWtftzzF_cycGhcMXadFb7MP45-AOU53yE</recordid><startdate>20100609</startdate><enddate>20100609</enddate><creator>Gitsas, Antonis</creator><creator>Yameen, Basit</creator><creator>Lazzara, Thomas Dominic</creator><creator>Steinhart, Martin</creator><creator>Duran, Hatice</creator><creator>Knoll, Wolfgang</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100609</creationdate><title>Polycyanurate Nanorod Arrays for Optical-Waveguide-Based Biosensing</title><author>Gitsas, Antonis ; Yameen, Basit ; Lazzara, Thomas Dominic ; Steinhart, Martin ; Duran, Hatice ; Knoll, Wolfgang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-84ab699070f10396c82e1b50f48142165870612edd2545452b28421dfb953a6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biosensing Techniques</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>General equipment and techniques</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>Kinetics</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanotubes</topic><topic>Nanotubes - chemistry</topic><topic>Physics</topic><topic>Polymers - chemistry</topic><topic>Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing</topic><topic>Surface Properties</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Triazines - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gitsas, Antonis</creatorcontrib><creatorcontrib>Yameen, Basit</creatorcontrib><creatorcontrib>Lazzara, Thomas Dominic</creatorcontrib><creatorcontrib>Steinhart, Martin</creatorcontrib><creatorcontrib>Duran, Hatice</creatorcontrib><creatorcontrib>Knoll, Wolfgang</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gitsas, Antonis</au><au>Yameen, Basit</au><au>Lazzara, Thomas Dominic</au><au>Steinhart, Martin</au><au>Duran, Hatice</au><au>Knoll, Wolfgang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polycyanurate Nanorod Arrays for Optical-Waveguide-Based Biosensing</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2010-06-09</date><risdate>2010</risdate><volume>10</volume><issue>6</issue><spage>2173</spage><epage>2177</epage><pages>2173-2177</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We demonstrate high-sensitivity biosensing by optical waveguide spectroscopy (OWS) at visible wavelengths using aligned polycyanurate thermoset nanorods (PCNs) arranged in extended arrays as waveguides. The PCNs formed by thermal polymerization of a cyanate ester monomer in self-ordered nanoporous alumina templates were 60 nm in diameter and 650 nm in length. Subtle refractive index changes of the medium surrounding the nanorods could be detected by monitoring the angular shifts of waveguiding modes. The sensing figure of merit thus achieved amounted to 196 reciprocal refractive index units and is, therefore, higher than that of other sensors based on angular modulation, while the configuration used here is eligible for further surface functionalization. Kinetics of the binding of taurine to the surface cyanate groups of the PCNs was monitored by OWS. Thus, modified PCNs bearing sulfonic acid groups at their surfaces were obtained. PCN arrays may represent a versatile platform for the design of biosensors.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20527931</pmid><doi>10.1021/nl1009102</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2010-06, Vol.10 (6), p.2173-2177
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_733261908
source MEDLINE; ACS Publications
subjects Biosensing Techniques
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
General equipment and techniques
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
Kinetics
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Nanocrystalline materials
Nanoscale materials and structures: fabrication and characterization
Nanotubes
Nanotubes - chemistry
Physics
Polymers - chemistry
Sensors (chemical, optical, electrical, movement, gas, etc.)
remote sensing
Surface Properties
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Triazines - chemistry
title Polycyanurate Nanorod Arrays for Optical-Waveguide-Based Biosensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T14%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polycyanurate%20Nanorod%20Arrays%20for%20Optical-Waveguide-Based%20Biosensing&rft.jtitle=Nano%20letters&rft.au=Gitsas,%20Antonis&rft.date=2010-06-09&rft.volume=10&rft.issue=6&rft.spage=2173&rft.epage=2177&rft.pages=2173-2177&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl1009102&rft_dat=%3Cproquest_cross%3E733261908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733261908&rft_id=info:pmid/20527931&rfr_iscdi=true