Resins with “Nano-Raisins”

Thermosensitive hydrogels are materials which globally shrink/swell in water when the surrounding temperature crosses the lower critical solution temperature (LCST). We demonstrate here a novel class of cross-linked polymeric materials, which do not shrink/swell in water globally, but nevertheless r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2010-06, Vol.26 (12), p.10243-10249
Hauptverfasser: Sinha-Ray, S, Zhang, Y, Placke, D, Megaridis, C. M, Yarin, A. L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10249
container_issue 12
container_start_page 10243
container_title Langmuir
container_volume 26
creator Sinha-Ray, S
Zhang, Y
Placke, D
Megaridis, C. M
Yarin, A. L
description Thermosensitive hydrogels are materials which globally shrink/swell in water when the surrounding temperature crosses the lower critical solution temperature (LCST). We demonstrate here a novel class of cross-linked polymeric materials, which do not shrink/swell in water globally, but nevertheless reveal a hydrogel-like, stimuli-responsive behavior. In particular, they demonstate a positive thermosensitive release of the embedded fluorescent dye significantly modulated when temperature crosses the LCST. Using staining with copper, transmission electron microscopy and energy dispersive X-ray analysis, we show that this effect is associated with nanogel “raisins” dispersed in such materials (e.g., polymer nanofibers). Shrinkage of individual nanogel “raisins” at elevated temperatures increases nanoporosity via increased exposure of the existing nanopores to water, or formation of new nanopores/nanocracks in the overstretched polymer matrix in the vicinity of shrinking nanogel “raisins”. As a result, the release rate of the embedded dye from the nanofibers increases at elevated temperatures. We suggest that similar functional materials with embedded nanogel “raisins” will find applications in nanofluidics and as drug carriers for controlled drug release.
doi_str_mv 10.1021/la1004177
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733258897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733258897</sourcerecordid><originalsourceid>FETCH-LOGICAL-a344t-1e53d782fdd3e6af18b403695ddb1cc95c7a592778f91800a5574904bdc2240b3</originalsourceid><addsrcrecordid>eNpt0MtKAzEUBuAgiq3VhS9QuhFxMXpymyRLKd6gKBRdh0ySwSnTmZp0EHd9EH25PolTOrYbVwcOH__h_AidY7jGQPBNaTAAw0IcoD7mBBIuiThEfRCMJoKltIdOYpwBgKJMHaMeAcxxmqZ9NJz6WFRx9Fks30fr1fezqepkaorNcr36OUVHuSmjP-vmAL3d372OH5PJy8PT-HaSGMrYMsGeUyckyZ2jPjU5lhkDmiruXIatVdwKwxURQuYKSwDDuWAKWOYsIQwyOkCX29xFqD8aH5d6XkTry9JUvm6iFpQSLqUSrbzaShvqGIPP9SIUcxO-NAa9aUPv2mjtsEttsrl3O_n3fgsuOmCiNWUeTGWLuHdEgUwp3Ttjo57VTajaMv45-AuC3HEp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733258897</pqid></control><display><type>article</type><title>Resins with “Nano-Raisins”</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Sinha-Ray, S ; Zhang, Y ; Placke, D ; Megaridis, C. M ; Yarin, A. L</creator><creatorcontrib>Sinha-Ray, S ; Zhang, Y ; Placke, D ; Megaridis, C. M ; Yarin, A. L</creatorcontrib><description>Thermosensitive hydrogels are materials which globally shrink/swell in water when the surrounding temperature crosses the lower critical solution temperature (LCST). We demonstrate here a novel class of cross-linked polymeric materials, which do not shrink/swell in water globally, but nevertheless reveal a hydrogel-like, stimuli-responsive behavior. In particular, they demonstate a positive thermosensitive release of the embedded fluorescent dye significantly modulated when temperature crosses the LCST. Using staining with copper, transmission electron microscopy and energy dispersive X-ray analysis, we show that this effect is associated with nanogel “raisins” dispersed in such materials (e.g., polymer nanofibers). Shrinkage of individual nanogel “raisins” at elevated temperatures increases nanoporosity via increased exposure of the existing nanopores to water, or formation of new nanopores/nanocracks in the overstretched polymer matrix in the vicinity of shrinking nanogel “raisins”. As a result, the release rate of the embedded dye from the nanofibers increases at elevated temperatures. We suggest that similar functional materials with embedded nanogel “raisins” will find applications in nanofluidics and as drug carriers for controlled drug release.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la1004177</identifier><identifier>PMID: 20151666</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal gels. Colloidal sols ; Colloidal state and disperse state ; Drug Carriers ; Exact sciences and technology ; Fluorescent Dyes ; General and physical chemistry ; Hydrogels - chemistry ; Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites ; Microfluidics ; Porous materials ; Temperature ; Water - chemistry</subject><ispartof>Langmuir, 2010-06, Vol.26 (12), p.10243-10249</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a344t-1e53d782fdd3e6af18b403695ddb1cc95c7a592778f91800a5574904bdc2240b3</citedby><cites>FETCH-LOGICAL-a344t-1e53d782fdd3e6af18b403695ddb1cc95c7a592778f91800a5574904bdc2240b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la1004177$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la1004177$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22908633$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20151666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sinha-Ray, S</creatorcontrib><creatorcontrib>Zhang, Y</creatorcontrib><creatorcontrib>Placke, D</creatorcontrib><creatorcontrib>Megaridis, C. M</creatorcontrib><creatorcontrib>Yarin, A. L</creatorcontrib><title>Resins with “Nano-Raisins”</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Thermosensitive hydrogels are materials which globally shrink/swell in water when the surrounding temperature crosses the lower critical solution temperature (LCST). We demonstrate here a novel class of cross-linked polymeric materials, which do not shrink/swell in water globally, but nevertheless reveal a hydrogel-like, stimuli-responsive behavior. In particular, they demonstate a positive thermosensitive release of the embedded fluorescent dye significantly modulated when temperature crosses the LCST. Using staining with copper, transmission electron microscopy and energy dispersive X-ray analysis, we show that this effect is associated with nanogel “raisins” dispersed in such materials (e.g., polymer nanofibers). Shrinkage of individual nanogel “raisins” at elevated temperatures increases nanoporosity via increased exposure of the existing nanopores to water, or formation of new nanopores/nanocracks in the overstretched polymer matrix in the vicinity of shrinking nanogel “raisins”. As a result, the release rate of the embedded dye from the nanofibers increases at elevated temperatures. We suggest that similar functional materials with embedded nanogel “raisins” will find applications in nanofluidics and as drug carriers for controlled drug release.</description><subject>Chemistry</subject><subject>Colloidal gels. Colloidal sols</subject><subject>Colloidal state and disperse state</subject><subject>Drug Carriers</subject><subject>Exact sciences and technology</subject><subject>Fluorescent Dyes</subject><subject>General and physical chemistry</subject><subject>Hydrogels - chemistry</subject><subject>Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites</subject><subject>Microfluidics</subject><subject>Porous materials</subject><subject>Temperature</subject><subject>Water - chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0MtKAzEUBuAgiq3VhS9QuhFxMXpymyRLKd6gKBRdh0ySwSnTmZp0EHd9EH25PolTOrYbVwcOH__h_AidY7jGQPBNaTAAw0IcoD7mBBIuiThEfRCMJoKltIdOYpwBgKJMHaMeAcxxmqZ9NJz6WFRx9Fks30fr1fezqepkaorNcr36OUVHuSmjP-vmAL3d372OH5PJy8PT-HaSGMrYMsGeUyckyZ2jPjU5lhkDmiruXIatVdwKwxURQuYKSwDDuWAKWOYsIQwyOkCX29xFqD8aH5d6XkTry9JUvm6iFpQSLqUSrbzaShvqGIPP9SIUcxO-NAa9aUPv2mjtsEttsrl3O_n3fgsuOmCiNWUeTGWLuHdEgUwp3Ttjo57VTajaMv45-AuC3HEp</recordid><startdate>20100615</startdate><enddate>20100615</enddate><creator>Sinha-Ray, S</creator><creator>Zhang, Y</creator><creator>Placke, D</creator><creator>Megaridis, C. M</creator><creator>Yarin, A. L</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20100615</creationdate><title>Resins with “Nano-Raisins”</title><author>Sinha-Ray, S ; Zhang, Y ; Placke, D ; Megaridis, C. M ; Yarin, A. L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a344t-1e53d782fdd3e6af18b403695ddb1cc95c7a592778f91800a5574904bdc2240b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chemistry</topic><topic>Colloidal gels. Colloidal sols</topic><topic>Colloidal state and disperse state</topic><topic>Drug Carriers</topic><topic>Exact sciences and technology</topic><topic>Fluorescent Dyes</topic><topic>General and physical chemistry</topic><topic>Hydrogels - chemistry</topic><topic>Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites</topic><topic>Microfluidics</topic><topic>Porous materials</topic><topic>Temperature</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sinha-Ray, S</creatorcontrib><creatorcontrib>Zhang, Y</creatorcontrib><creatorcontrib>Placke, D</creatorcontrib><creatorcontrib>Megaridis, C. M</creatorcontrib><creatorcontrib>Yarin, A. L</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sinha-Ray, S</au><au>Zhang, Y</au><au>Placke, D</au><au>Megaridis, C. M</au><au>Yarin, A. L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resins with “Nano-Raisins”</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2010-06-15</date><risdate>2010</risdate><volume>26</volume><issue>12</issue><spage>10243</spage><epage>10249</epage><pages>10243-10249</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>Thermosensitive hydrogels are materials which globally shrink/swell in water when the surrounding temperature crosses the lower critical solution temperature (LCST). We demonstrate here a novel class of cross-linked polymeric materials, which do not shrink/swell in water globally, but nevertheless reveal a hydrogel-like, stimuli-responsive behavior. In particular, they demonstate a positive thermosensitive release of the embedded fluorescent dye significantly modulated when temperature crosses the LCST. Using staining with copper, transmission electron microscopy and energy dispersive X-ray analysis, we show that this effect is associated with nanogel “raisins” dispersed in such materials (e.g., polymer nanofibers). Shrinkage of individual nanogel “raisins” at elevated temperatures increases nanoporosity via increased exposure of the existing nanopores to water, or formation of new nanopores/nanocracks in the overstretched polymer matrix in the vicinity of shrinking nanogel “raisins”. As a result, the release rate of the embedded dye from the nanofibers increases at elevated temperatures. We suggest that similar functional materials with embedded nanogel “raisins” will find applications in nanofluidics and as drug carriers for controlled drug release.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20151666</pmid><doi>10.1021/la1004177</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2010-06, Vol.26 (12), p.10243-10249
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_733258897
source MEDLINE; American Chemical Society Journals
subjects Chemistry
Colloidal gels. Colloidal sols
Colloidal state and disperse state
Drug Carriers
Exact sciences and technology
Fluorescent Dyes
General and physical chemistry
Hydrogels - chemistry
Materials: Nano-and Mesostructured Materials, Polymers, Gels, Liquid Crystals, Composites
Microfluidics
Porous materials
Temperature
Water - chemistry
title Resins with “Nano-Raisins”
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T00%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resins%20with%20%E2%80%9CNano-Raisins%E2%80%9D&rft.jtitle=Langmuir&rft.au=Sinha-Ray,%20S&rft.date=2010-06-15&rft.volume=26&rft.issue=12&rft.spage=10243&rft.epage=10249&rft.pages=10243-10249&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la1004177&rft_dat=%3Cproquest_cross%3E733258897%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733258897&rft_id=info:pmid/20151666&rfr_iscdi=true