Inverse problem and the pseudoempirical orthogonal function method of solution. 1: Theory

In situations where a large library of observed distributions of a function, such as temperature vs height, is available, these distributions may be used to form a set of empirical orthogonal functions. When sufficient observed distributions are not available, but when the general mathematical form...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Optics 1988-04, Vol.27 (7), p.1235-1242
Hauptverfasser: Ben-David, A, Herman, B M, Reagan, J A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1242
container_issue 7
container_start_page 1235
container_title Applied Optics
container_volume 27
creator Ben-David, A
Herman, B M
Reagan, J A
description In situations where a large library of observed distributions of a function, such as temperature vs height, is available, these distributions may be used to form a set of empirical orthogonal functions. When sufficient observed distributions are not available, but when the general mathematical form of the distributions is known, a library may be constructed from the set of mathematical functions. A set of pseudoempirical orthogonal functions may then be constructed from this mathematical library. It is assumed that any distribution of the function may then be constructed from a linear sum of this pseudoempirical orthogonal set. This idea is employed to develop an inversion method using pseudoempirical orthogonal functions when a sufficient library of observations is not available. The technique employs a smoothing constraint as well as a positivity constraint, when warranted by the physical nature of the unknown.
doi_str_mv 10.1364/AO.27.001235
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733258460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733258460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-1e79e17689d16deca0c3b99843e13d59893a3cce9818e3c6ed8aba0de49eb9a93</originalsourceid><addsrcrecordid>eNo9kM9LwzAcxYMoTqc3z5KbF1vzo2kTb2P4YzDYZYKeQpp86yptM5NW2H9vx6an7_s-Pjx4D6EbSlLK8-xhtkpZkRJCGRcn6IIKrpJMMHa610IllMn3CbqM8YsQLjJVnKMJI4LTUV-gj0X3AyEC3gZfNtBi0zncb8Y_wuA8tNs61NY02Id-4z99N8pq6Gxf-w63MHoO-wpH3wx7K8X0Ea834MPuCp1VpolwfbxT9Pb8tJ6_JsvVy2I-WyaWKdInFAoFtMilcjR3YA2xvFRKZhwod0JJxQ23FpSkErjNwUlTGuIgU1Aqo_gU3R1yxwbfA8Ret3W00DSmAz9EXXDOhMxyMpL3B9IGH2OASm9D3Zqw05To_ZZ6ttKs0IctR_z2GDyULbh_-G88_gtuVm_4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733258460</pqid></control><display><type>article</type><title>Inverse problem and the pseudoempirical orthogonal function method of solution. 1: Theory</title><source>Alma/SFX Local Collection</source><source>Optica Publishing Group Journals</source><creator>Ben-David, A ; Herman, B M ; Reagan, J A</creator><creatorcontrib>Ben-David, A ; Herman, B M ; Reagan, J A</creatorcontrib><description>In situations where a large library of observed distributions of a function, such as temperature vs height, is available, these distributions may be used to form a set of empirical orthogonal functions. When sufficient observed distributions are not available, but when the general mathematical form of the distributions is known, a library may be constructed from the set of mathematical functions. A set of pseudoempirical orthogonal functions may then be constructed from this mathematical library. It is assumed that any distribution of the function may then be constructed from a linear sum of this pseudoempirical orthogonal set. This idea is employed to develop an inversion method using pseudoempirical orthogonal functions when a sufficient library of observations is not available. The technique employs a smoothing constraint as well as a positivity constraint, when warranted by the physical nature of the unknown.</description><identifier>ISSN: 1559-128X</identifier><identifier>ISSN: 0003-6935</identifier><identifier>EISSN: 1539-4522</identifier><identifier>DOI: 10.1364/AO.27.001235</identifier><identifier>PMID: 20531549</identifier><language>eng</language><publisher>United States</publisher><ispartof>Applied Optics, 1988-04, Vol.27 (7), p.1235-1242</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-1e79e17689d16deca0c3b99843e13d59893a3cce9818e3c6ed8aba0de49eb9a93</citedby><cites>FETCH-LOGICAL-c290t-1e79e17689d16deca0c3b99843e13d59893a3cce9818e3c6ed8aba0de49eb9a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20531549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ben-David, A</creatorcontrib><creatorcontrib>Herman, B M</creatorcontrib><creatorcontrib>Reagan, J A</creatorcontrib><title>Inverse problem and the pseudoempirical orthogonal function method of solution. 1: Theory</title><title>Applied Optics</title><addtitle>Appl Opt</addtitle><description>In situations where a large library of observed distributions of a function, such as temperature vs height, is available, these distributions may be used to form a set of empirical orthogonal functions. When sufficient observed distributions are not available, but when the general mathematical form of the distributions is known, a library may be constructed from the set of mathematical functions. A set of pseudoempirical orthogonal functions may then be constructed from this mathematical library. It is assumed that any distribution of the function may then be constructed from a linear sum of this pseudoempirical orthogonal set. This idea is employed to develop an inversion method using pseudoempirical orthogonal functions when a sufficient library of observations is not available. The technique employs a smoothing constraint as well as a positivity constraint, when warranted by the physical nature of the unknown.</description><issn>1559-128X</issn><issn>0003-6935</issn><issn>1539-4522</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNo9kM9LwzAcxYMoTqc3z5KbF1vzo2kTb2P4YzDYZYKeQpp86yptM5NW2H9vx6an7_s-Pjx4D6EbSlLK8-xhtkpZkRJCGRcn6IIKrpJMMHa610IllMn3CbqM8YsQLjJVnKMJI4LTUV-gj0X3AyEC3gZfNtBi0zncb8Y_wuA8tNs61NY02Id-4z99N8pq6Gxf-w63MHoO-wpH3wx7K8X0Ea834MPuCp1VpolwfbxT9Pb8tJ6_JsvVy2I-WyaWKdInFAoFtMilcjR3YA2xvFRKZhwod0JJxQ23FpSkErjNwUlTGuIgU1Aqo_gU3R1yxwbfA8Ret3W00DSmAz9EXXDOhMxyMpL3B9IGH2OASm9D3Zqw05To_ZZ6ttKs0IctR_z2GDyULbh_-G88_gtuVm_4</recordid><startdate>19880401</startdate><enddate>19880401</enddate><creator>Ben-David, A</creator><creator>Herman, B M</creator><creator>Reagan, J A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19880401</creationdate><title>Inverse problem and the pseudoempirical orthogonal function method of solution. 1: Theory</title><author>Ben-David, A ; Herman, B M ; Reagan, J A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-1e79e17689d16deca0c3b99843e13d59893a3cce9818e3c6ed8aba0de49eb9a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ben-David, A</creatorcontrib><creatorcontrib>Herman, B M</creatorcontrib><creatorcontrib>Reagan, J A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Applied Optics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ben-David, A</au><au>Herman, B M</au><au>Reagan, J A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse problem and the pseudoempirical orthogonal function method of solution. 1: Theory</atitle><jtitle>Applied Optics</jtitle><addtitle>Appl Opt</addtitle><date>1988-04-01</date><risdate>1988</risdate><volume>27</volume><issue>7</issue><spage>1235</spage><epage>1242</epage><pages>1235-1242</pages><issn>1559-128X</issn><issn>0003-6935</issn><eissn>1539-4522</eissn><abstract>In situations where a large library of observed distributions of a function, such as temperature vs height, is available, these distributions may be used to form a set of empirical orthogonal functions. When sufficient observed distributions are not available, but when the general mathematical form of the distributions is known, a library may be constructed from the set of mathematical functions. A set of pseudoempirical orthogonal functions may then be constructed from this mathematical library. It is assumed that any distribution of the function may then be constructed from a linear sum of this pseudoempirical orthogonal set. This idea is employed to develop an inversion method using pseudoempirical orthogonal functions when a sufficient library of observations is not available. The technique employs a smoothing constraint as well as a positivity constraint, when warranted by the physical nature of the unknown.</abstract><cop>United States</cop><pmid>20531549</pmid><doi>10.1364/AO.27.001235</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1559-128X
ispartof Applied Optics, 1988-04, Vol.27 (7), p.1235-1242
issn 1559-128X
0003-6935
1539-4522
language eng
recordid cdi_proquest_miscellaneous_733258460
source Alma/SFX Local Collection; Optica Publishing Group Journals
title Inverse problem and the pseudoempirical orthogonal function method of solution. 1: Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A14%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20problem%20and%20the%20pseudoempirical%20orthogonal%20function%20method%20of%20solution.%201:%20Theory&rft.jtitle=Applied%20Optics&rft.au=Ben-David,%20A&rft.date=1988-04-01&rft.volume=27&rft.issue=7&rft.spage=1235&rft.epage=1242&rft.pages=1235-1242&rft.issn=1559-128X&rft.eissn=1539-4522&rft_id=info:doi/10.1364/AO.27.001235&rft_dat=%3Cproquest_cross%3E733258460%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733258460&rft_id=info:pmid/20531549&rfr_iscdi=true