Adjusting case mix payment amounts for inaccurately reported comorbidity data
Case mix methods such as diagnosis related groups have become a basis of payment for inpatient hospitalizations in many countries. Specifying cost weight values for case mix system payment has important consequences; recent evidence suggests case mix cost weight inaccuracies influence the supply of...
Gespeichert in:
Veröffentlicht in: | Health care management science 2010-03, Vol.13 (1), p.65-73 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 73 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Health care management science |
container_volume | 13 |
creator | Sutherland, Jason M. Hamm, Jeremy Hatcher, Jeff |
description | Case mix methods such as diagnosis related groups have become a basis of payment for inpatient hospitalizations in many countries. Specifying cost weight values for case mix system payment has important consequences; recent evidence suggests case mix cost weight inaccuracies influence the supply of some hospital-based services. To begin to address the question of case mix cost weight accuracy, this paper is motivated by the objective of improving the accuracy of cost weight values due to inaccurate or incomplete comorbidity data. The methods are suitable to case mix methods that incorporate disease severity or comorbidity adjustments. The methods are based on the availability of detailed clinical and cost information linked at the patient level and leverage recent results from clinical data audits. A Bayesian framework is used to synthesize clinical data audit information regarding misclassification probabilities into cost weight value calculations. The models are implemented through Markov chain Monte Carlo methods. An example used to demonstrate the methods finds that inaccurate comorbidity data affects cost weight values by biasing cost weight values (and payments) downward. The implications for hospital payments are discussed and the generalizability of the approach is explored. |
doi_str_mv | 10.1007/s10729-009-9112-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733257646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1962201061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-544f8fc1c171a5c50f4480356fdf4340042555a3f289bfe8edda5c3b3e2b61ab3</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS0EoqXwAGyQxYZVYPybZFlVQJGK2MDamjh2m8t1HGwHkbfHVylFQmIx9sj-5uj4mJCXDN4ygPZdZtDyvgHom54x3sAjcs5Uy5tedP3j2otON73mcEae5XwAAAWaPSVnHCRw3olz8vlyPKy5TPMttZgdDdMvuuAW3FwohrjOJVMfE51mtHZNWNxxo8ktMRU3UhtDTMM0TmWjIxZ8Tp54PGb34n6_IN8-vP96dd3cfPn46eryprFSt6VRUvrOW2ZZy1BZBV7KDoTSfvRSSADJlVIoPO_6wbvOjWPFxCAcHzTDQVyQN7vukuKP1eViwpStOx5xdnHNphWCq1ZLXcnX_5CHuKa5mjOct73UTKgKsR2yKeacnDdLmgKmzTAwp6TNnrSpSZtT0gbqzPU-U8Nw9mHgOy53FpML5qcRyERdtlocqpLA6XRWa6mlVbVp7kqoUq_uPa5DcOOD1p9fqgDfgVyv5luX_j7i_wZ_A24ZoX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227946135</pqid></control><display><type>article</type><title>Adjusting case mix payment amounts for inaccurately reported comorbidity data</title><source>MEDLINE</source><source>RePEc</source><source>SpringerLink Journals</source><source>Business Source Complete</source><creator>Sutherland, Jason M. ; Hamm, Jeremy ; Hatcher, Jeff</creator><creatorcontrib>Sutherland, Jason M. ; Hamm, Jeremy ; Hatcher, Jeff</creatorcontrib><description>Case mix methods such as diagnosis related groups have become a basis of payment for inpatient hospitalizations in many countries. Specifying cost weight values for case mix system payment has important consequences; recent evidence suggests case mix cost weight inaccuracies influence the supply of some hospital-based services. To begin to address the question of case mix cost weight accuracy, this paper is motivated by the objective of improving the accuracy of cost weight values due to inaccurate or incomplete comorbidity data. The methods are suitable to case mix methods that incorporate disease severity or comorbidity adjustments. The methods are based on the availability of detailed clinical and cost information linked at the patient level and leverage recent results from clinical data audits. A Bayesian framework is used to synthesize clinical data audit information regarding misclassification probabilities into cost weight value calculations. The models are implemented through Markov chain Monte Carlo methods. An example used to demonstrate the methods finds that inaccurate comorbidity data affects cost weight values by biasing cost weight values (and payments) downward. The implications for hospital payments are discussed and the generalizability of the approach is explored.</description><identifier>ISSN: 1386-9620</identifier><identifier>EISSN: 1572-9389</identifier><identifier>DOI: 10.1007/s10729-009-9112-0</identifier><identifier>PMID: 20402283</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Accuracy ; Business and Management ; Case mix ; Clinical data ; Comorbidity ; Costs ; Data analysis ; Data quality ; Diagnosis related groups ; Diagnosis-Related Groups - classification ; Diagnosis-Related Groups - economics ; Disease ; DRG ; DRGs ; Econometrics ; Health Administration ; Health care policy ; Health Informatics ; Hospitalization ; Hospitals ; Humans ; Management ; Markov analysis ; Medicare ; Methods ; Models, Econometric ; Monte Carlo Method ; Ontario ; Operations Research/Decision Theory ; Patients ; Payment ; Payment systems ; Pneumonia ; Pricing policies ; Reimbursement Mechanisms - economics ; Studies</subject><ispartof>Health care management science, 2010-03, Vol.13 (1), p.65-73</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><rights>Springer Science+Business Media, LLC 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-544f8fc1c171a5c50f4480356fdf4340042555a3f289bfe8edda5c3b3e2b61ab3</citedby><cites>FETCH-LOGICAL-c467t-544f8fc1c171a5c50f4480356fdf4340042555a3f289bfe8edda5c3b3e2b61ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10729-009-9112-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10729-009-9112-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,3994,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20402283$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttp://econpapers.repec.org/article/kaphcarem/v_3a13_3ay_3a2010_3ai_3a1_3ap_3a65-73.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Sutherland, Jason M.</creatorcontrib><creatorcontrib>Hamm, Jeremy</creatorcontrib><creatorcontrib>Hatcher, Jeff</creatorcontrib><title>Adjusting case mix payment amounts for inaccurately reported comorbidity data</title><title>Health care management science</title><addtitle>Health Care Manag Sci</addtitle><addtitle>Health Care Manag Sci</addtitle><description>Case mix methods such as diagnosis related groups have become a basis of payment for inpatient hospitalizations in many countries. Specifying cost weight values for case mix system payment has important consequences; recent evidence suggests case mix cost weight inaccuracies influence the supply of some hospital-based services. To begin to address the question of case mix cost weight accuracy, this paper is motivated by the objective of improving the accuracy of cost weight values due to inaccurate or incomplete comorbidity data. The methods are suitable to case mix methods that incorporate disease severity or comorbidity adjustments. The methods are based on the availability of detailed clinical and cost information linked at the patient level and leverage recent results from clinical data audits. A Bayesian framework is used to synthesize clinical data audit information regarding misclassification probabilities into cost weight value calculations. The models are implemented through Markov chain Monte Carlo methods. An example used to demonstrate the methods finds that inaccurate comorbidity data affects cost weight values by biasing cost weight values (and payments) downward. The implications for hospital payments are discussed and the generalizability of the approach is explored.</description><subject>Accuracy</subject><subject>Business and Management</subject><subject>Case mix</subject><subject>Clinical data</subject><subject>Comorbidity</subject><subject>Costs</subject><subject>Data analysis</subject><subject>Data quality</subject><subject>Diagnosis related groups</subject><subject>Diagnosis-Related Groups - classification</subject><subject>Diagnosis-Related Groups - economics</subject><subject>Disease</subject><subject>DRG</subject><subject>DRGs</subject><subject>Econometrics</subject><subject>Health Administration</subject><subject>Health care policy</subject><subject>Health Informatics</subject><subject>Hospitalization</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Management</subject><subject>Markov analysis</subject><subject>Medicare</subject><subject>Methods</subject><subject>Models, Econometric</subject><subject>Monte Carlo Method</subject><subject>Ontario</subject><subject>Operations Research/Decision Theory</subject><subject>Patients</subject><subject>Payment</subject><subject>Payment systems</subject><subject>Pneumonia</subject><subject>Pricing policies</subject><subject>Reimbursement Mechanisms - economics</subject><subject>Studies</subject><issn>1386-9620</issn><issn>1572-9389</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>X2L</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kc1u1TAQhS0EoqXwAGyQxYZVYPybZFlVQJGK2MDamjh2m8t1HGwHkbfHVylFQmIx9sj-5uj4mJCXDN4ygPZdZtDyvgHom54x3sAjcs5Uy5tedP3j2otON73mcEae5XwAAAWaPSVnHCRw3olz8vlyPKy5TPMttZgdDdMvuuAW3FwohrjOJVMfE51mtHZNWNxxo8ktMRU3UhtDTMM0TmWjIxZ8Tp54PGb34n6_IN8-vP96dd3cfPn46eryprFSt6VRUvrOW2ZZy1BZBV7KDoTSfvRSSADJlVIoPO_6wbvOjWPFxCAcHzTDQVyQN7vukuKP1eViwpStOx5xdnHNphWCq1ZLXcnX_5CHuKa5mjOct73UTKgKsR2yKeacnDdLmgKmzTAwp6TNnrSpSZtT0gbqzPU-U8Nw9mHgOy53FpML5qcRyERdtlocqpLA6XRWa6mlVbVp7kqoUq_uPa5DcOOD1p9fqgDfgVyv5luX_j7i_wZ_A24ZoX8</recordid><startdate>20100301</startdate><enddate>20100301</enddate><creator>Sutherland, Jason M.</creator><creator>Hamm, Jeremy</creator><creator>Hatcher, Jeff</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20100301</creationdate><title>Adjusting case mix payment amounts for inaccurately reported comorbidity data</title><author>Sutherland, Jason M. ; Hamm, Jeremy ; Hatcher, Jeff</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-544f8fc1c171a5c50f4480356fdf4340042555a3f289bfe8edda5c3b3e2b61ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Business and Management</topic><topic>Case mix</topic><topic>Clinical data</topic><topic>Comorbidity</topic><topic>Costs</topic><topic>Data analysis</topic><topic>Data quality</topic><topic>Diagnosis related groups</topic><topic>Diagnosis-Related Groups - classification</topic><topic>Diagnosis-Related Groups - economics</topic><topic>Disease</topic><topic>DRG</topic><topic>DRGs</topic><topic>Econometrics</topic><topic>Health Administration</topic><topic>Health care policy</topic><topic>Health Informatics</topic><topic>Hospitalization</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Management</topic><topic>Markov analysis</topic><topic>Medicare</topic><topic>Methods</topic><topic>Models, Econometric</topic><topic>Monte Carlo Method</topic><topic>Ontario</topic><topic>Operations Research/Decision Theory</topic><topic>Patients</topic><topic>Payment</topic><topic>Payment systems</topic><topic>Pneumonia</topic><topic>Pricing policies</topic><topic>Reimbursement Mechanisms - economics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sutherland, Jason M.</creatorcontrib><creatorcontrib>Hamm, Jeremy</creatorcontrib><creatorcontrib>Hatcher, Jeff</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Health care management science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sutherland, Jason M.</au><au>Hamm, Jeremy</au><au>Hatcher, Jeff</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjusting case mix payment amounts for inaccurately reported comorbidity data</atitle><jtitle>Health care management science</jtitle><stitle>Health Care Manag Sci</stitle><addtitle>Health Care Manag Sci</addtitle><date>2010-03-01</date><risdate>2010</risdate><volume>13</volume><issue>1</issue><spage>65</spage><epage>73</epage><pages>65-73</pages><issn>1386-9620</issn><eissn>1572-9389</eissn><abstract>Case mix methods such as diagnosis related groups have become a basis of payment for inpatient hospitalizations in many countries. Specifying cost weight values for case mix system payment has important consequences; recent evidence suggests case mix cost weight inaccuracies influence the supply of some hospital-based services. To begin to address the question of case mix cost weight accuracy, this paper is motivated by the objective of improving the accuracy of cost weight values due to inaccurate or incomplete comorbidity data. The methods are suitable to case mix methods that incorporate disease severity or comorbidity adjustments. The methods are based on the availability of detailed clinical and cost information linked at the patient level and leverage recent results from clinical data audits. A Bayesian framework is used to synthesize clinical data audit information regarding misclassification probabilities into cost weight value calculations. The models are implemented through Markov chain Monte Carlo methods. An example used to demonstrate the methods finds that inaccurate comorbidity data affects cost weight values by biasing cost weight values (and payments) downward. The implications for hospital payments are discussed and the generalizability of the approach is explored.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>20402283</pmid><doi>10.1007/s10729-009-9112-0</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-9620 |
ispartof | Health care management science, 2010-03, Vol.13 (1), p.65-73 |
issn | 1386-9620 1572-9389 |
language | eng |
recordid | cdi_proquest_miscellaneous_733257646 |
source | MEDLINE; RePEc; SpringerLink Journals; Business Source Complete |
subjects | Accuracy Business and Management Case mix Clinical data Comorbidity Costs Data analysis Data quality Diagnosis related groups Diagnosis-Related Groups - classification Diagnosis-Related Groups - economics Disease DRG DRGs Econometrics Health Administration Health care policy Health Informatics Hospitalization Hospitals Humans Management Markov analysis Medicare Methods Models, Econometric Monte Carlo Method Ontario Operations Research/Decision Theory Patients Payment Payment systems Pneumonia Pricing policies Reimbursement Mechanisms - economics Studies |
title | Adjusting case mix payment amounts for inaccurately reported comorbidity data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T05%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjusting%20case%20mix%20payment%20amounts%20for%20inaccurately%20reported%20comorbidity%20data&rft.jtitle=Health%20care%20management%20science&rft.au=Sutherland,%20Jason%20M.&rft.date=2010-03-01&rft.volume=13&rft.issue=1&rft.spage=65&rft.epage=73&rft.pages=65-73&rft.issn=1386-9620&rft.eissn=1572-9389&rft_id=info:doi/10.1007/s10729-009-9112-0&rft_dat=%3Cproquest_cross%3E1962201061%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=227946135&rft_id=info:pmid/20402283&rfr_iscdi=true |