Ligand-to-Ligand Charge-Transfer Transitions of Platinum(II) Complexes with Arylacetylide Ligands with Different Chain Lengths: Spectroscopic Characterization, Effect of Molecular Conformations, and Density Functional Theory Calculations

The complexes [Pt(tBu3tpy){CC(C6H4CC)n−1R}]+ (n=1: R=alkyl and aryl (Ar); n=1–3: R=phenyl (Ph) or Ph‐N(CH3)2‐4; n=1 and 2, R=Ph‐NH2‐4; tBu3tpy=4,4’,4’’‐tri‐tert‐butyl‐2,2’:6’,2’’‐terpyridine) and [Pt(Cl3tpy)(CCR)]+ (R=tert‐butyl (tBu), Ph, 9,9’‐dibutylfluorene, 9,9’‐dibutyl‐7‐dimethyl‐amine‐fluor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2010-06, Vol.16 (22), p.6540-6554
Hauptverfasser: Tong, Glenna So Ming, Law, Yuen-Chi, Kui, Steven C. F., Zhu, Nianyong, Leung, King Hong, Phillips, David Lee, Che, Chi-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6554
container_issue 22
container_start_page 6540
container_title Chemistry : a European journal
container_volume 16
creator Tong, Glenna So Ming
Law, Yuen-Chi
Kui, Steven C. F.
Zhu, Nianyong
Leung, King Hong
Phillips, David Lee
Che, Chi-Ming
description The complexes [Pt(tBu3tpy){CC(C6H4CC)n−1R}]+ (n=1: R=alkyl and aryl (Ar); n=1–3: R=phenyl (Ph) or Ph‐N(CH3)2‐4; n=1 and 2, R=Ph‐NH2‐4; tBu3tpy=4,4’,4’’‐tri‐tert‐butyl‐2,2’:6’,2’’‐terpyridine) and [Pt(Cl3tpy)(CCR)]+ (R=tert‐butyl (tBu), Ph, 9,9’‐dibutylfluorene, 9,9’‐dibutyl‐7‐dimethyl‐amine‐fluorene; Cl3tpy=4,4’,4’’‐trichloro‐2,2’:6’,2’’‐terpyridine) were prepared. The effects of substituent(s) on the terpyridine (tpy) and acetylide ligands and chain length of arylacetylide ligands on the absorption and emission spectra were examined. Resonance Raman (RR) spectra of [Pt(tBu3tpy)(CCR)]+ (R=n‐butyl, Ph, and C6H4‐OCH3‐4) obtained in acetonitrile at 298 K reveal that the structural distortion of the CC bond in the electronic excited state obtained by 502.9 nm excitation is substantially larger than that obtained by 416 nm excitation. Density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations on [Pt(H3tpy)(CCR)]+ (R= n‐propyl (nPr), 2‐pyridyl (Py)), [Pt(H3tpy){CC(C6H4CC)n−1Ph}]+ (n=1–3), and [Pt(H3tpy){CC(C6H4CC)n−1C6H4‐N(CH3)2‐4}]+/+H+ (n=1–3; H3tpy=nonsubstituted terpyridine) at two different conformations were performed, namely, with the phenyl rings of the arylacetylide ligands coplanar (“cop”) with and perpendicular (“per”) to the H3tpy ligand. Combining the experimental data and calculated results, the two lowest energy absorption peak maxima, λ1 and λ2, of [Pt(Y3tpy)(CCR)]+ (Y=tBu or Cl, R=aryl) are attributed to 1[π(CCR)→π*(Y3tpy)] in the “cop” conformation and mixed 1[dπ(Pt)→π*(Y3tpy)]/1[π(CCR)→π*(Y3tpy)] transitions in the “per” conformation. The lowest energy absorption peak λ1 for [Pt(tBu3tpy){CC(C6H4CC)n−1C6H4‐H‐4}]+ (n=1–3) shows a redshift with increasing chain length. However, for [Pt(tBu3tpy){CC(C6H4CC)n−1C6H4‐N(CH3)2‐4}]+ (n=1–3), λ1 shows a blueshift with increasing chain length n, but shows a redshift after the addition of acid. The emissions of [Pt(Y3tpy)(CCR)]+ (Y=tBu or Cl) at 524–642 nm measured in dichloromethane at 298 K are assigned to the 3[π(CCAr)→π*(Y3tpy)] excited states and mixed 3[dπ(Pt)→π*(Y3tpy)]/3[π(CC)→π*(Y3tpy)] excited states for R=aryl and alkyl groups, respectively. [Pt(tBu3tpy){CC(C6H4CC)n−1C6H4‐N(CH3)2‐4}]+ (n=1 and 2) are nonemissive, and this is attributed to the small energy gap between the singlet ground state (S0) and the lowest triplet excited state (T1). Longer chain always leads to a redshift in energy? No! Platinum(II) complexes bearing terpyridine and acetylide ligands w
doi_str_mv 10.1002/chem.200903046
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733248758</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733248758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4436-778a1415b7b7894fb0d1b82bdb136f520ef891d6b756eb4f84085a0391b1236f3</originalsourceid><addsrcrecordid>eNqFks9v0zAcxSMEYmVw5YgscWBIS_Gv2Am3kXVdRQeIFe0YOY7TekviYifawv_M_4DTlApxgJMt-_Pe-9p6QfASwSmCEL-TG1VPMYQJJJCyR8EERRiFhLPocTCBCeUhi0hyFDxz7hZ6jBHyNDjCkGLMGJwEP5d6LZoibE047kC6EXatwpUVjSuVBbuNbrVpHDAl-FKJVjddfbJYvAWpqbeVelAO3Ot2A85sXwmp2r7ShQKj3_7qXJfeTDXt4K8bsFTNut249-B6q2RrjZNmq-UuXMhWWf1DDJGnYOZ1sh2Sr0ylZFcJ62Ob0th6R7hTMEx9roYhe3DRNXI4FhVYbZSxPUhFNah27PPgSSkqp17s1-Pg28VslV6Gy8_zRXq2DCWlhIWcxwJRFOU853FCyxwWKI9xXuSIsDLCUJVxggqW84ipnJYxhXEkIElQjrAnyHHwZvTdWvO9U67Nau2kqirRKNO5jBOCacyj2JMn_yRRDCGNE0yhR1__hd6azvqXeoozFiU4YomnpiMl_ac6q8psa3UtbJ8hmA2VyYbKZIfKeMGrvW2X16o44L874oFkBO51pfr_2GXp5ezqT_Nw1GrXqoeDVti7jHHCo-zm0zy7WV3Tj_OvHzJCfgEdW-Ci</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766592569</pqid></control><display><type>article</type><title>Ligand-to-Ligand Charge-Transfer Transitions of Platinum(II) Complexes with Arylacetylide Ligands with Different Chain Lengths: Spectroscopic Characterization, Effect of Molecular Conformations, and Density Functional Theory Calculations</title><source>Wiley-Blackwell Journals</source><creator>Tong, Glenna So Ming ; Law, Yuen-Chi ; Kui, Steven C. F. ; Zhu, Nianyong ; Leung, King Hong ; Phillips, David Lee ; Che, Chi-Ming</creator><creatorcontrib>Tong, Glenna So Ming ; Law, Yuen-Chi ; Kui, Steven C. F. ; Zhu, Nianyong ; Leung, King Hong ; Phillips, David Lee ; Che, Chi-Ming</creatorcontrib><description>The complexes [Pt(tBu3tpy){CC(C6H4CC)n−1R}]+ (n=1: R=alkyl and aryl (Ar); n=1–3: R=phenyl (Ph) or Ph‐N(CH3)2‐4; n=1 and 2, R=Ph‐NH2‐4; tBu3tpy=4,4’,4’’‐tri‐tert‐butyl‐2,2’:6’,2’’‐terpyridine) and [Pt(Cl3tpy)(CCR)]+ (R=tert‐butyl (tBu), Ph, 9,9’‐dibutylfluorene, 9,9’‐dibutyl‐7‐dimethyl‐amine‐fluorene; Cl3tpy=4,4’,4’’‐trichloro‐2,2’:6’,2’’‐terpyridine) were prepared. The effects of substituent(s) on the terpyridine (tpy) and acetylide ligands and chain length of arylacetylide ligands on the absorption and emission spectra were examined. Resonance Raman (RR) spectra of [Pt(tBu3tpy)(CCR)]+ (R=n‐butyl, Ph, and C6H4‐OCH3‐4) obtained in acetonitrile at 298 K reveal that the structural distortion of the CC bond in the electronic excited state obtained by 502.9 nm excitation is substantially larger than that obtained by 416 nm excitation. Density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations on [Pt(H3tpy)(CCR)]+ (R= n‐propyl (nPr), 2‐pyridyl (Py)), [Pt(H3tpy){CC(C6H4CC)n−1Ph}]+ (n=1–3), and [Pt(H3tpy){CC(C6H4CC)n−1C6H4‐N(CH3)2‐4}]+/+H+ (n=1–3; H3tpy=nonsubstituted terpyridine) at two different conformations were performed, namely, with the phenyl rings of the arylacetylide ligands coplanar (“cop”) with and perpendicular (“per”) to the H3tpy ligand. Combining the experimental data and calculated results, the two lowest energy absorption peak maxima, λ1 and λ2, of [Pt(Y3tpy)(CCR)]+ (Y=tBu or Cl, R=aryl) are attributed to 1[π(CCR)→π*(Y3tpy)] in the “cop” conformation and mixed 1[dπ(Pt)→π*(Y3tpy)]/1[π(CCR)→π*(Y3tpy)] transitions in the “per” conformation. The lowest energy absorption peak λ1 for [Pt(tBu3tpy){CC(C6H4CC)n−1C6H4‐H‐4}]+ (n=1–3) shows a redshift with increasing chain length. However, for [Pt(tBu3tpy){CC(C6H4CC)n−1C6H4‐N(CH3)2‐4}]+ (n=1–3), λ1 shows a blueshift with increasing chain length n, but shows a redshift after the addition of acid. The emissions of [Pt(Y3tpy)(CCR)]+ (Y=tBu or Cl) at 524–642 nm measured in dichloromethane at 298 K are assigned to the 3[π(CCAr)→π*(Y3tpy)] excited states and mixed 3[dπ(Pt)→π*(Y3tpy)]/3[π(CC)→π*(Y3tpy)] excited states for R=aryl and alkyl groups, respectively. [Pt(tBu3tpy){CC(C6H4CC)n−1C6H4‐N(CH3)2‐4}]+ (n=1 and 2) are nonemissive, and this is attributed to the small energy gap between the singlet ground state (S0) and the lowest triplet excited state (T1). Longer chain always leads to a redshift in energy? No! Platinum(II) complexes bearing terpyridine and acetylide ligands with alkyl and aryl groups have been synthesized and characterized both spectroscopically and theoretically. In particular, the chain length effect of [Pt(tBu3tpy){CC(C6H4CC)n−1C6H4‐X‐4}]+ (tBu3tpy=4,4′,4′′‐tri‐tert‐butyl‐2,2′:6′,2′′‐terpyridine, X=H and NMe2, Me=methyl) has been investigated (see graphic).</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.200903046</identifier><identifier>PMID: 20422660</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Aromatic compounds ; Chains ; Chemistry ; density functional calculations ; Excitation ; ligand effects ; Ligands ; Mathematical analysis ; Molecular conformation ; phosphorescence ; photophysics ; Platinum ; Red shift ; UV/Vis spectroscopy</subject><ispartof>Chemistry : a European journal, 2010-06, Vol.16 (22), p.6540-6554</ispartof><rights>Copyright © 2010 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2010 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4436-778a1415b7b7894fb0d1b82bdb136f520ef891d6b756eb4f84085a0391b1236f3</citedby><cites>FETCH-LOGICAL-c4436-778a1415b7b7894fb0d1b82bdb136f520ef891d6b756eb4f84085a0391b1236f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.200903046$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.200903046$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20422660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tong, Glenna So Ming</creatorcontrib><creatorcontrib>Law, Yuen-Chi</creatorcontrib><creatorcontrib>Kui, Steven C. F.</creatorcontrib><creatorcontrib>Zhu, Nianyong</creatorcontrib><creatorcontrib>Leung, King Hong</creatorcontrib><creatorcontrib>Phillips, David Lee</creatorcontrib><creatorcontrib>Che, Chi-Ming</creatorcontrib><title>Ligand-to-Ligand Charge-Transfer Transitions of Platinum(II) Complexes with Arylacetylide Ligands with Different Chain Lengths: Spectroscopic Characterization, Effect of Molecular Conformations, and Density Functional Theory Calculations</title><title>Chemistry : a European journal</title><addtitle>Chemistry - A European Journal</addtitle><description>The complexes [Pt(tBu3tpy){CC(C6H4CC)n−1R}]+ (n=1: R=alkyl and aryl (Ar); n=1–3: R=phenyl (Ph) or Ph‐N(CH3)2‐4; n=1 and 2, R=Ph‐NH2‐4; tBu3tpy=4,4’,4’’‐tri‐tert‐butyl‐2,2’:6’,2’’‐terpyridine) and [Pt(Cl3tpy)(CCR)]+ (R=tert‐butyl (tBu), Ph, 9,9’‐dibutylfluorene, 9,9’‐dibutyl‐7‐dimethyl‐amine‐fluorene; Cl3tpy=4,4’,4’’‐trichloro‐2,2’:6’,2’’‐terpyridine) were prepared. The effects of substituent(s) on the terpyridine (tpy) and acetylide ligands and chain length of arylacetylide ligands on the absorption and emission spectra were examined. Resonance Raman (RR) spectra of [Pt(tBu3tpy)(CCR)]+ (R=n‐butyl, Ph, and C6H4‐OCH3‐4) obtained in acetonitrile at 298 K reveal that the structural distortion of the CC bond in the electronic excited state obtained by 502.9 nm excitation is substantially larger than that obtained by 416 nm excitation. Density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations on [Pt(H3tpy)(CCR)]+ (R= n‐propyl (nPr), 2‐pyridyl (Py)), [Pt(H3tpy){CC(C6H4CC)n−1Ph}]+ (n=1–3), and [Pt(H3tpy){CC(C6H4CC)n−1C6H4‐N(CH3)2‐4}]+/+H+ (n=1–3; H3tpy=nonsubstituted terpyridine) at two different conformations were performed, namely, with the phenyl rings of the arylacetylide ligands coplanar (“cop”) with and perpendicular (“per”) to the H3tpy ligand. Combining the experimental data and calculated results, the two lowest energy absorption peak maxima, λ1 and λ2, of [Pt(Y3tpy)(CCR)]+ (Y=tBu or Cl, R=aryl) are attributed to 1[π(CCR)→π*(Y3tpy)] in the “cop” conformation and mixed 1[dπ(Pt)→π*(Y3tpy)]/1[π(CCR)→π*(Y3tpy)] transitions in the “per” conformation. The lowest energy absorption peak λ1 for [Pt(tBu3tpy){CC(C6H4CC)n−1C6H4‐H‐4}]+ (n=1–3) shows a redshift with increasing chain length. However, for [Pt(tBu3tpy){CC(C6H4CC)n−1C6H4‐N(CH3)2‐4}]+ (n=1–3), λ1 shows a blueshift with increasing chain length n, but shows a redshift after the addition of acid. The emissions of [Pt(Y3tpy)(CCR)]+ (Y=tBu or Cl) at 524–642 nm measured in dichloromethane at 298 K are assigned to the 3[π(CCAr)→π*(Y3tpy)] excited states and mixed 3[dπ(Pt)→π*(Y3tpy)]/3[π(CC)→π*(Y3tpy)] excited states for R=aryl and alkyl groups, respectively. [Pt(tBu3tpy){CC(C6H4CC)n−1C6H4‐N(CH3)2‐4}]+ (n=1 and 2) are nonemissive, and this is attributed to the small energy gap between the singlet ground state (S0) and the lowest triplet excited state (T1). Longer chain always leads to a redshift in energy? No! Platinum(II) complexes bearing terpyridine and acetylide ligands with alkyl and aryl groups have been synthesized and characterized both spectroscopically and theoretically. In particular, the chain length effect of [Pt(tBu3tpy){CC(C6H4CC)n−1C6H4‐X‐4}]+ (tBu3tpy=4,4′,4′′‐tri‐tert‐butyl‐2,2′:6′,2′′‐terpyridine, X=H and NMe2, Me=methyl) has been investigated (see graphic).</description><subject>Aromatic compounds</subject><subject>Chains</subject><subject>Chemistry</subject><subject>density functional calculations</subject><subject>Excitation</subject><subject>ligand effects</subject><subject>Ligands</subject><subject>Mathematical analysis</subject><subject>Molecular conformation</subject><subject>phosphorescence</subject><subject>photophysics</subject><subject>Platinum</subject><subject>Red shift</subject><subject>UV/Vis spectroscopy</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFks9v0zAcxSMEYmVw5YgscWBIS_Gv2Am3kXVdRQeIFe0YOY7TekviYifawv_M_4DTlApxgJMt-_Pe-9p6QfASwSmCEL-TG1VPMYQJJJCyR8EERRiFhLPocTCBCeUhi0hyFDxz7hZ6jBHyNDjCkGLMGJwEP5d6LZoibE047kC6EXatwpUVjSuVBbuNbrVpHDAl-FKJVjddfbJYvAWpqbeVelAO3Ot2A85sXwmp2r7ShQKj3_7qXJfeTDXt4K8bsFTNut249-B6q2RrjZNmq-UuXMhWWf1DDJGnYOZ1sh2Sr0ylZFcJ62Ob0th6R7hTMEx9roYhe3DRNXI4FhVYbZSxPUhFNah27PPgSSkqp17s1-Pg28VslV6Gy8_zRXq2DCWlhIWcxwJRFOU853FCyxwWKI9xXuSIsDLCUJVxggqW84ipnJYxhXEkIElQjrAnyHHwZvTdWvO9U67Nau2kqirRKNO5jBOCacyj2JMn_yRRDCGNE0yhR1__hd6azvqXeoozFiU4YomnpiMl_ac6q8psa3UtbJ8hmA2VyYbKZIfKeMGrvW2X16o44L874oFkBO51pfr_2GXp5ezqT_Nw1GrXqoeDVti7jHHCo-zm0zy7WV3Tj_OvHzJCfgEdW-Ci</recordid><startdate>20100611</startdate><enddate>20100611</enddate><creator>Tong, Glenna So Ming</creator><creator>Law, Yuen-Chi</creator><creator>Kui, Steven C. F.</creator><creator>Zhu, Nianyong</creator><creator>Leung, King Hong</creator><creator>Phillips, David Lee</creator><creator>Che, Chi-Ming</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20100611</creationdate><title>Ligand-to-Ligand Charge-Transfer Transitions of Platinum(II) Complexes with Arylacetylide Ligands with Different Chain Lengths: Spectroscopic Characterization, Effect of Molecular Conformations, and Density Functional Theory Calculations</title><author>Tong, Glenna So Ming ; Law, Yuen-Chi ; Kui, Steven C. F. ; Zhu, Nianyong ; Leung, King Hong ; Phillips, David Lee ; Che, Chi-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4436-778a1415b7b7894fb0d1b82bdb136f520ef891d6b756eb4f84085a0391b1236f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aromatic compounds</topic><topic>Chains</topic><topic>Chemistry</topic><topic>density functional calculations</topic><topic>Excitation</topic><topic>ligand effects</topic><topic>Ligands</topic><topic>Mathematical analysis</topic><topic>Molecular conformation</topic><topic>phosphorescence</topic><topic>photophysics</topic><topic>Platinum</topic><topic>Red shift</topic><topic>UV/Vis spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Glenna So Ming</creatorcontrib><creatorcontrib>Law, Yuen-Chi</creatorcontrib><creatorcontrib>Kui, Steven C. F.</creatorcontrib><creatorcontrib>Zhu, Nianyong</creatorcontrib><creatorcontrib>Leung, King Hong</creatorcontrib><creatorcontrib>Phillips, David Lee</creatorcontrib><creatorcontrib>Che, Chi-Ming</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Glenna So Ming</au><au>Law, Yuen-Chi</au><au>Kui, Steven C. F.</au><au>Zhu, Nianyong</au><au>Leung, King Hong</au><au>Phillips, David Lee</au><au>Che, Chi-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ligand-to-Ligand Charge-Transfer Transitions of Platinum(II) Complexes with Arylacetylide Ligands with Different Chain Lengths: Spectroscopic Characterization, Effect of Molecular Conformations, and Density Functional Theory Calculations</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry - A European Journal</addtitle><date>2010-06-11</date><risdate>2010</risdate><volume>16</volume><issue>22</issue><spage>6540</spage><epage>6554</epage><pages>6540-6554</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>The complexes [Pt(tBu3tpy){CC(C6H4CC)n−1R}]+ (n=1: R=alkyl and aryl (Ar); n=1–3: R=phenyl (Ph) or Ph‐N(CH3)2‐4; n=1 and 2, R=Ph‐NH2‐4; tBu3tpy=4,4’,4’’‐tri‐tert‐butyl‐2,2’:6’,2’’‐terpyridine) and [Pt(Cl3tpy)(CCR)]+ (R=tert‐butyl (tBu), Ph, 9,9’‐dibutylfluorene, 9,9’‐dibutyl‐7‐dimethyl‐amine‐fluorene; Cl3tpy=4,4’,4’’‐trichloro‐2,2’:6’,2’’‐terpyridine) were prepared. The effects of substituent(s) on the terpyridine (tpy) and acetylide ligands and chain length of arylacetylide ligands on the absorption and emission spectra were examined. Resonance Raman (RR) spectra of [Pt(tBu3tpy)(CCR)]+ (R=n‐butyl, Ph, and C6H4‐OCH3‐4) obtained in acetonitrile at 298 K reveal that the structural distortion of the CC bond in the electronic excited state obtained by 502.9 nm excitation is substantially larger than that obtained by 416 nm excitation. Density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations on [Pt(H3tpy)(CCR)]+ (R= n‐propyl (nPr), 2‐pyridyl (Py)), [Pt(H3tpy){CC(C6H4CC)n−1Ph}]+ (n=1–3), and [Pt(H3tpy){CC(C6H4CC)n−1C6H4‐N(CH3)2‐4}]+/+H+ (n=1–3; H3tpy=nonsubstituted terpyridine) at two different conformations were performed, namely, with the phenyl rings of the arylacetylide ligands coplanar (“cop”) with and perpendicular (“per”) to the H3tpy ligand. Combining the experimental data and calculated results, the two lowest energy absorption peak maxima, λ1 and λ2, of [Pt(Y3tpy)(CCR)]+ (Y=tBu or Cl, R=aryl) are attributed to 1[π(CCR)→π*(Y3tpy)] in the “cop” conformation and mixed 1[dπ(Pt)→π*(Y3tpy)]/1[π(CCR)→π*(Y3tpy)] transitions in the “per” conformation. The lowest energy absorption peak λ1 for [Pt(tBu3tpy){CC(C6H4CC)n−1C6H4‐H‐4}]+ (n=1–3) shows a redshift with increasing chain length. However, for [Pt(tBu3tpy){CC(C6H4CC)n−1C6H4‐N(CH3)2‐4}]+ (n=1–3), λ1 shows a blueshift with increasing chain length n, but shows a redshift after the addition of acid. The emissions of [Pt(Y3tpy)(CCR)]+ (Y=tBu or Cl) at 524–642 nm measured in dichloromethane at 298 K are assigned to the 3[π(CCAr)→π*(Y3tpy)] excited states and mixed 3[dπ(Pt)→π*(Y3tpy)]/3[π(CC)→π*(Y3tpy)] excited states for R=aryl and alkyl groups, respectively. [Pt(tBu3tpy){CC(C6H4CC)n−1C6H4‐N(CH3)2‐4}]+ (n=1 and 2) are nonemissive, and this is attributed to the small energy gap between the singlet ground state (S0) and the lowest triplet excited state (T1). Longer chain always leads to a redshift in energy? No! Platinum(II) complexes bearing terpyridine and acetylide ligands with alkyl and aryl groups have been synthesized and characterized both spectroscopically and theoretically. In particular, the chain length effect of [Pt(tBu3tpy){CC(C6H4CC)n−1C6H4‐X‐4}]+ (tBu3tpy=4,4′,4′′‐tri‐tert‐butyl‐2,2′:6′,2′′‐terpyridine, X=H and NMe2, Me=methyl) has been investigated (see graphic).</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>20422660</pmid><doi>10.1002/chem.200903046</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2010-06, Vol.16 (22), p.6540-6554
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_733248758
source Wiley-Blackwell Journals
subjects Aromatic compounds
Chains
Chemistry
density functional calculations
Excitation
ligand effects
Ligands
Mathematical analysis
Molecular conformation
phosphorescence
photophysics
Platinum
Red shift
UV/Vis spectroscopy
title Ligand-to-Ligand Charge-Transfer Transitions of Platinum(II) Complexes with Arylacetylide Ligands with Different Chain Lengths: Spectroscopic Characterization, Effect of Molecular Conformations, and Density Functional Theory Calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A32%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ligand-to-Ligand%20Charge-Transfer%20Transitions%20of%20Platinum(II)%20Complexes%20with%20Arylacetylide%20Ligands%20with%20Different%20Chain%20Lengths:%20Spectroscopic%20Characterization,%20Effect%20of%20Molecular%20Conformations,%20and%20Density%20Functional%20Theory%20Calculations&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Tong,%20Glenna%E2%80%85So%E2%80%85Ming&rft.date=2010-06-11&rft.volume=16&rft.issue=22&rft.spage=6540&rft.epage=6554&rft.pages=6540-6554&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.200903046&rft_dat=%3Cproquest_cross%3E733248758%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1766592569&rft_id=info:pmid/20422660&rfr_iscdi=true