Geomicrobiology of Deep-Sea Hydrothermal Vents

During the cycling of seawater through the earth's crust along the midocean ridge system, geothermal energy is transferred into chemical energy in the form of reduced inorganic compounds. These compounds are derived from the reaction of seawater with crustal rocks at high temperatures and are e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1985-08, Vol.229 (4715), p.717-725
Hauptverfasser: Jannasch, Holger W., Mottl, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During the cycling of seawater through the earth's crust along the midocean ridge system, geothermal energy is transferred into chemical energy in the form of reduced inorganic compounds. These compounds are derived from the reaction of seawater with crustal rocks at high temperatures and are emitted from warm (≤25°C) and hot (∼ 350°C) submarine vents at depths of 2000 to 3000 meters. Chemolithotrophic bacteria use these reduced chemical species as sources of energy for the reduction of carbon dioxide (assimilation) to organic carbon. These bacteria form the base of the food chain, which permits copious populations of certain specifically adapted invertebrates to grow in the immediate vicinity of the vents. Such highly prolific, although narrowly localized, deep-sea communities are thus maintained primarily by terrestrial rather than by solar energy. Reduced sulfur compounds appear to represent the major electron donors for aerobic microbial metabolism, but methane-, hydrogen-, iron-, and manganese-oxidizing bacteria have also been found. Methanogenic, sulfur-respiring, and extremely thermophilic isolates carry out anaerobic chemosynthesis. Bacteria grow most abundantly in the shallow crust where upwelling hot, reducing hydrothermal fluid mixes with downwelling cold, oxygenated seawater. The predominant production of biomass, however, is the result of symbiotic associations between chemolithotrophic bacteria and certain invertebrates, which have also been found as fossils in Cretaceous sulfide ores of ophiolite deposits.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.229.4715.717