Relative Contributions of Uranium, Thorium, and Potassium to Heat Production in the Earth

Data from a wide variety of igneous rock types show that the ratio of potassium to uranium is approximately 1 $\times $ 10$^{4}$. This suggests that the value of K/U $\approx $ 1 $\times $ 10$^{4}$ is characteristic of terrestrial materials and is distinct from the value of 8 $\times $ 10$^{4}$ foun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 1964-01, Vol.143 (3605), p.465-467
Hauptverfasser: Wasserburg, G. J., Gordon J. F. Mac Donald, Hoyle, F., Fowler, William A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 467
container_issue 3605
container_start_page 465
container_title Science (American Association for the Advancement of Science)
container_volume 143
creator Wasserburg, G. J.
Gordon J. F. Mac Donald
Hoyle, F.
Fowler, William A.
description Data from a wide variety of igneous rock types show that the ratio of potassium to uranium is approximately 1 $\times $ 10$^{4}$. This suggests that the value of K/U $\approx $ 1 $\times $ 10$^{4}$ is characteristic of terrestrial materials and is distinct from the value of 8 $\times $ 10$^{4}$ found in chondrites. In a model earth with K/U $\approx $ 10$^{4}$, uranium and thorium are the dominant sources of radioactive heat at the present time. This will permit the average terrestrial concentrations of uranium and thorium to be 2 to 4.7 times higher than that observed in chondrites. The resulting models of the terrestrial heat production will be considerably different from those for chondritic heat production because of the longer half-life of U$^{238}$ and Th$^{232}$ compared with K$^{40}$.
doi_str_mv 10.1126/science.143.3605.465
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_733232846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1712053</jstor_id><sourcerecordid>1712053</sourcerecordid><originalsourceid>FETCH-LOGICAL-a471t-32c8b064ce13d4b5f53c67022a19ba559b7a53209a16d1e5a7d4b0d0580d6e8e3</originalsourceid><addsrcrecordid>eNpNkMGKFDEQhoMo7rj6BosEL17ssZJK0t1HGVZXWHCR3YOnkE7XMFlmkjVJC769GWdAT1VFfX8VfIxdCVgLIc3H4gNFT2uhcI0G9FoZ_YytBIy6GyXgc7YCQNMN0OsL9qqUR4C2G_EluxD9gNgrXLEf32nvavhFfJNizWFaakix8LTlD9nFsBw-8Ptdyn8bF2d-l6orpY28Jn5DrvK7nObFH2M8RF53xK9drrvX7MXW7Qu9OddL9vD5-n5z091--_J18-m2c6oXtUPphwmM8iRwVpPeavSmBymdGCen9Tj1TqOE0QkzC9KubxTMoAeYDQ2El-zd6W4qNdhmpZLf-RQj-WqVEAoUNuj9CXrK6edCpdpDKJ72excpLcX2iBLloEwj1Yn0OZWSaWufcji4_NsKsEfx9izeNvH2KN428S329vxgmQ40_wudTTfg6gQ8lpryf3shQSP-AcyBiRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733232846</pqid></control><display><type>article</type><title>Relative Contributions of Uranium, Thorium, and Potassium to Heat Production in the Earth</title><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Wasserburg, G. J. ; Gordon J. F. Mac Donald ; Hoyle, F. ; Fowler, William A.</creator><creatorcontrib>Wasserburg, G. J. ; Gordon J. F. Mac Donald ; Hoyle, F. ; Fowler, William A. ; California Inst. of Tech., Pasadena</creatorcontrib><description>Data from a wide variety of igneous rock types show that the ratio of potassium to uranium is approximately 1 $\times $ 10$^{4}$. This suggests that the value of K/U $\approx $ 1 $\times $ 10$^{4}$ is characteristic of terrestrial materials and is distinct from the value of 8 $\times $ 10$^{4}$ found in chondrites. In a model earth with K/U $\approx $ 10$^{4}$, uranium and thorium are the dominant sources of radioactive heat at the present time. This will permit the average terrestrial concentrations of uranium and thorium to be 2 to 4.7 times higher than that observed in chondrites. The resulting models of the terrestrial heat production will be considerably different from those for chondritic heat production because of the longer half-life of U$^{238}$ and Th$^{232}$ compared with K$^{40}$.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.143.3605.465</identifier><identifier>PMID: 17833743</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Aeons ; Bismuth ; Chondrites ; EARTH ; Eclogite ; GEOLOGY AND MINERALOGY ; HALF-LIFE ; Heat transfer ; HEATING ; IGNEOUS ROCKS ; METEORITES ; Planetary composition ; POTASSIUM ; POTASSIUM 40 ; RADIOACTIVITY ; Thermogenesis ; THORIUM ; THORIUM 231 ; URANIUM ; URANIUM 238</subject><ispartof>Science (American Association for the Advancement of Science), 1964-01, Vol.143 (3605), p.465-467</ispartof><rights>Copyright 1964 American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a471t-32c8b064ce13d4b5f53c67022a19ba559b7a53209a16d1e5a7d4b0d0580d6e8e3</citedby><cites>FETCH-LOGICAL-a471t-32c8b064ce13d4b5f53c67022a19ba559b7a53209a16d1e5a7d4b0d0580d6e8e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1712053$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1712053$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,886,2885,2886,27929,27930,58022,58255</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17833743$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/4114043$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wasserburg, G. J.</creatorcontrib><creatorcontrib>Gordon J. F. Mac Donald</creatorcontrib><creatorcontrib>Hoyle, F.</creatorcontrib><creatorcontrib>Fowler, William A.</creatorcontrib><creatorcontrib>California Inst. of Tech., Pasadena</creatorcontrib><title>Relative Contributions of Uranium, Thorium, and Potassium to Heat Production in the Earth</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Data from a wide variety of igneous rock types show that the ratio of potassium to uranium is approximately 1 $\times $ 10$^{4}$. This suggests that the value of K/U $\approx $ 1 $\times $ 10$^{4}$ is characteristic of terrestrial materials and is distinct from the value of 8 $\times $ 10$^{4}$ found in chondrites. In a model earth with K/U $\approx $ 10$^{4}$, uranium and thorium are the dominant sources of radioactive heat at the present time. This will permit the average terrestrial concentrations of uranium and thorium to be 2 to 4.7 times higher than that observed in chondrites. The resulting models of the terrestrial heat production will be considerably different from those for chondritic heat production because of the longer half-life of U$^{238}$ and Th$^{232}$ compared with K$^{40}$.</description><subject>Aeons</subject><subject>Bismuth</subject><subject>Chondrites</subject><subject>EARTH</subject><subject>Eclogite</subject><subject>GEOLOGY AND MINERALOGY</subject><subject>HALF-LIFE</subject><subject>Heat transfer</subject><subject>HEATING</subject><subject>IGNEOUS ROCKS</subject><subject>METEORITES</subject><subject>Planetary composition</subject><subject>POTASSIUM</subject><subject>POTASSIUM 40</subject><subject>RADIOACTIVITY</subject><subject>Thermogenesis</subject><subject>THORIUM</subject><subject>THORIUM 231</subject><subject>URANIUM</subject><subject>URANIUM 238</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1964</creationdate><recordtype>article</recordtype><recordid>eNpNkMGKFDEQhoMo7rj6BosEL17ssZJK0t1HGVZXWHCR3YOnkE7XMFlmkjVJC769GWdAT1VFfX8VfIxdCVgLIc3H4gNFT2uhcI0G9FoZ_YytBIy6GyXgc7YCQNMN0OsL9qqUR4C2G_EluxD9gNgrXLEf32nvavhFfJNizWFaakix8LTlD9nFsBw-8Ptdyn8bF2d-l6orpY28Jn5DrvK7nObFH2M8RF53xK9drrvX7MXW7Qu9OddL9vD5-n5z091--_J18-m2c6oXtUPphwmM8iRwVpPeavSmBymdGCen9Tj1TqOE0QkzC9KubxTMoAeYDQ2El-zd6W4qNdhmpZLf-RQj-WqVEAoUNuj9CXrK6edCpdpDKJ72excpLcX2iBLloEwj1Yn0OZWSaWufcji4_NsKsEfx9izeNvH2KN428S329vxgmQ40_wudTTfg6gQ8lpryf3shQSP-AcyBiRQ</recordid><startdate>19640131</startdate><enddate>19640131</enddate><creator>Wasserburg, G. J.</creator><creator>Gordon J. F. Mac Donald</creator><creator>Hoyle, F.</creator><creator>Fowler, William A.</creator><general>American Association for the Advancement of Science</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>19640131</creationdate><title>Relative Contributions of Uranium, Thorium, and Potassium to Heat Production in the Earth</title><author>Wasserburg, G. J. ; Gordon J. F. Mac Donald ; Hoyle, F. ; Fowler, William A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a471t-32c8b064ce13d4b5f53c67022a19ba559b7a53209a16d1e5a7d4b0d0580d6e8e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1964</creationdate><topic>Aeons</topic><topic>Bismuth</topic><topic>Chondrites</topic><topic>EARTH</topic><topic>Eclogite</topic><topic>GEOLOGY AND MINERALOGY</topic><topic>HALF-LIFE</topic><topic>Heat transfer</topic><topic>HEATING</topic><topic>IGNEOUS ROCKS</topic><topic>METEORITES</topic><topic>Planetary composition</topic><topic>POTASSIUM</topic><topic>POTASSIUM 40</topic><topic>RADIOACTIVITY</topic><topic>Thermogenesis</topic><topic>THORIUM</topic><topic>THORIUM 231</topic><topic>URANIUM</topic><topic>URANIUM 238</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wasserburg, G. J.</creatorcontrib><creatorcontrib>Gordon J. F. Mac Donald</creatorcontrib><creatorcontrib>Hoyle, F.</creatorcontrib><creatorcontrib>Fowler, William A.</creatorcontrib><creatorcontrib>California Inst. of Tech., Pasadena</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wasserburg, G. J.</au><au>Gordon J. F. Mac Donald</au><au>Hoyle, F.</au><au>Fowler, William A.</au><aucorp>California Inst. of Tech., Pasadena</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relative Contributions of Uranium, Thorium, and Potassium to Heat Production in the Earth</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>1964-01-31</date><risdate>1964</risdate><volume>143</volume><issue>3605</issue><spage>465</spage><epage>467</epage><pages>465-467</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>Data from a wide variety of igneous rock types show that the ratio of potassium to uranium is approximately 1 $\times $ 10$^{4}$. This suggests that the value of K/U $\approx $ 1 $\times $ 10$^{4}$ is characteristic of terrestrial materials and is distinct from the value of 8 $\times $ 10$^{4}$ found in chondrites. In a model earth with K/U $\approx $ 10$^{4}$, uranium and thorium are the dominant sources of radioactive heat at the present time. This will permit the average terrestrial concentrations of uranium and thorium to be 2 to 4.7 times higher than that observed in chondrites. The resulting models of the terrestrial heat production will be considerably different from those for chondritic heat production because of the longer half-life of U$^{238}$ and Th$^{232}$ compared with K$^{40}$.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>17833743</pmid><doi>10.1126/science.143.3605.465</doi><tpages>3</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 1964-01, Vol.143 (3605), p.465-467
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_733232846
source Science Magazine; JSTOR Archive Collection A-Z Listing
subjects Aeons
Bismuth
Chondrites
EARTH
Eclogite
GEOLOGY AND MINERALOGY
HALF-LIFE
Heat transfer
HEATING
IGNEOUS ROCKS
METEORITES
Planetary composition
POTASSIUM
POTASSIUM 40
RADIOACTIVITY
Thermogenesis
THORIUM
THORIUM 231
URANIUM
URANIUM 238
title Relative Contributions of Uranium, Thorium, and Potassium to Heat Production in the Earth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T11%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relative%20Contributions%20of%20Uranium,%20Thorium,%20and%20Potassium%20to%20Heat%20Production%20in%20the%20Earth&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Wasserburg,%20G.%20J.&rft.aucorp=California%20Inst.%20of%20Tech.,%20Pasadena&rft.date=1964-01-31&rft.volume=143&rft.issue=3605&rft.spage=465&rft.epage=467&rft.pages=465-467&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.143.3605.465&rft_dat=%3Cjstor_osti_%3E1712053%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733232846&rft_id=info:pmid/17833743&rft_jstor_id=1712053&rfr_iscdi=true