Recollision dynamics and time delay in strong-field double ionization
Three-dimensional classical ensembles are employed to study recollision dynamics in double ionization of atoms by 780-nm intense lasers. After recollision one electron typically remains bound to the atom for a portion of a laser cycle, during which time the nucleus strongly influences its direction...
Gespeichert in:
Veröffentlicht in: | Optics express 2007-02, Vol.15 (3), p.767-778 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three-dimensional classical ensembles are employed to study recollision dynamics in double ionization of atoms by 780-nm intense lasers. After recollision one electron typically remains bound to the atom for a portion of a laser cycle, during which time the nucleus strongly influences its direction of motion. The electron then escapes over a suppressed barrier, with its final momentum depending critically on the laser phase at escape. The other electron remains unbound after collision, and typically drifts out in a momentum hemisphere opposite from its motion just after the collision. Several example trajectories at intensity 0.4 PW/cm(2) with various time delays between recollision and ionization are presented. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/oe.15.000767 |