Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber

We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2005-09, Vol.13 (19), p.7637-7644
Hauptverfasser: Fu, L, Rochette, M, Ta'eed, V, Moss, D, Eggleton, B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7644
container_issue 19
container_start_page 7637
container_title Optics express
container_volume 13
creator Fu, L
Rochette, M
Ta'eed, V
Moss, D
Eggleton, B
description We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate with 5.8 ps duration pulses, thus demonstrating the feasibility of this device operating with high bit-rate data signals. These results are achieved with pulse peak powers
doi_str_mv 10.1364/OPEX.13.007637
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_733223257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733223257</sourcerecordid><originalsourceid>FETCH-LOGICAL-p140t-b6d24f674da74ea856aa8ba58990fbd8c14e02dad24cfc26888ea67f4bf22b9f3</originalsourceid><addsrcrecordid>eNo1kEtLAzEUhYMgtla3LiU7V6N5NY9lKVULhQoquBuSmZtpJPNwMiP47x1sXZ17z_m4cA9CN5TcUy7Fw_5l8zFN94QoydUZmlNiRCaIVjN0mdInIVQooy7QjBphtDJ0jrpt8w1pCJUdQtvg1uME0WfdwSbAdVuO8Ri4aS9x2w2hsBH3UEED_TEKDU6hqeIfD3iV2CtwXBxsLNoJC5NXRZsS9sFBf4XOvY0Jrk-6QO-Pm7f1c7bbP23Xq13WUUGGzMmSCS-VKK0SYPVSWqudXWpjiHelLqgAwko7UYUvmNRag5XKC-cZc8bzBbo73u369mucXszrkAqI0TbQjilXnDPG2VJN5O2JHF0NZd71obb9T_5fEv8F6CRpgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733223257</pqid></control><display><type>article</type><title>Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fu, L ; Rochette, M ; Ta'eed, V ; Moss, D ; Eggleton, B</creator><creatorcontrib>Fu, L ; Rochette, M ; Ta'eed, V ; Moss, D ; Eggleton, B</creatorcontrib><description>We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate with 5.8 ps duration pulses, thus demonstrating the feasibility of this device operating with high bit-rate data signals. These results are achieved with pulse peak powers &lt;10 W in a fully passive device, including only 2.8 m of chalcogenide fiber. We obtain an excellent agreement between theory and experiment and show that both the high nonlinearity of the chalcogenide glass along with its high normal dispersion near 1550 nm enables a significant device length reduction in comparison with silica-based devices, without compromise on the performance. We find that even for only a few meters of fiber, the large normal dispersion of the chalcogenide glass inhibits spectral oscillations that would appear with self-phase modulation alone. We measure the two photon absorption attenuation coefficient and find that it advantageously affects the device transfer function.</description><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OPEX.13.007637</identifier><identifier>PMID: 19498791</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2005-09, Vol.13 (19), p.7637-7644</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19498791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, L</creatorcontrib><creatorcontrib>Rochette, M</creatorcontrib><creatorcontrib>Ta'eed, V</creatorcontrib><creatorcontrib>Moss, D</creatorcontrib><creatorcontrib>Eggleton, B</creatorcontrib><title>Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate with 5.8 ps duration pulses, thus demonstrating the feasibility of this device operating with high bit-rate data signals. These results are achieved with pulse peak powers &lt;10 W in a fully passive device, including only 2.8 m of chalcogenide fiber. We obtain an excellent agreement between theory and experiment and show that both the high nonlinearity of the chalcogenide glass along with its high normal dispersion near 1550 nm enables a significant device length reduction in comparison with silica-based devices, without compromise on the performance. We find that even for only a few meters of fiber, the large normal dispersion of the chalcogenide glass inhibits spectral oscillations that would appear with self-phase modulation alone. We measure the two photon absorption attenuation coefficient and find that it advantageously affects the device transfer function.</description><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLAzEUhYMgtla3LiU7V6N5NY9lKVULhQoquBuSmZtpJPNwMiP47x1sXZ17z_m4cA9CN5TcUy7Fw_5l8zFN94QoydUZmlNiRCaIVjN0mdInIVQooy7QjBphtDJ0jrpt8w1pCJUdQtvg1uME0WfdwSbAdVuO8Ri4aS9x2w2hsBH3UEED_TEKDU6hqeIfD3iV2CtwXBxsLNoJC5NXRZsS9sFBf4XOvY0Jrk-6QO-Pm7f1c7bbP23Xq13WUUGGzMmSCS-VKK0SYPVSWqudXWpjiHelLqgAwko7UYUvmNRag5XKC-cZc8bzBbo73u369mucXszrkAqI0TbQjilXnDPG2VJN5O2JHF0NZd71obb9T_5fEv8F6CRpgw</recordid><startdate>20050919</startdate><enddate>20050919</enddate><creator>Fu, L</creator><creator>Rochette, M</creator><creator>Ta'eed, V</creator><creator>Moss, D</creator><creator>Eggleton, B</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20050919</creationdate><title>Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber</title><author>Fu, L ; Rochette, M ; Ta'eed, V ; Moss, D ; Eggleton, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p140t-b6d24f674da74ea856aa8ba58990fbd8c14e02dad24cfc26888ea67f4bf22b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, L</creatorcontrib><creatorcontrib>Rochette, M</creatorcontrib><creatorcontrib>Ta'eed, V</creatorcontrib><creatorcontrib>Moss, D</creatorcontrib><creatorcontrib>Eggleton, B</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, L</au><au>Rochette, M</au><au>Ta'eed, V</au><au>Moss, D</au><au>Eggleton, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2005-09-19</date><risdate>2005</risdate><volume>13</volume><issue>19</issue><spage>7637</spage><epage>7644</epage><pages>7637-7644</pages><eissn>1094-4087</eissn><abstract>We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate with 5.8 ps duration pulses, thus demonstrating the feasibility of this device operating with high bit-rate data signals. These results are achieved with pulse peak powers &lt;10 W in a fully passive device, including only 2.8 m of chalcogenide fiber. We obtain an excellent agreement between theory and experiment and show that both the high nonlinearity of the chalcogenide glass along with its high normal dispersion near 1550 nm enables a significant device length reduction in comparison with silica-based devices, without compromise on the performance. We find that even for only a few meters of fiber, the large normal dispersion of the chalcogenide glass inhibits spectral oscillations that would appear with self-phase modulation alone. We measure the two photon absorption attenuation coefficient and find that it advantageously affects the device transfer function.</abstract><cop>United States</cop><pmid>19498791</pmid><doi>10.1364/OPEX.13.007637</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 1094-4087
ispartof Optics express, 2005-09, Vol.13 (19), p.7637-7644
issn 1094-4087
language eng
recordid cdi_proquest_miscellaneous_733223257
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20self-phase%20modulation%20based%20optical%20regeneration%20in%20single%20mode%20As2Se3%20chalcogenide%20glass%20fiber&rft.jtitle=Optics%20express&rft.au=Fu,%20L&rft.date=2005-09-19&rft.volume=13&rft.issue=19&rft.spage=7637&rft.epage=7644&rft.pages=7637-7644&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OPEX.13.007637&rft_dat=%3Cproquest_pubme%3E733223257%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733223257&rft_id=info:pmid/19498791&rfr_iscdi=true