Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber
We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate...
Gespeichert in:
Veröffentlicht in: | Optics express 2005-09, Vol.13 (19), p.7637-7644 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7644 |
---|---|
container_issue | 19 |
container_start_page | 7637 |
container_title | Optics express |
container_volume | 13 |
creator | Fu, L Rochette, M Ta'eed, V Moss, D Eggleton, B |
description | We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate with 5.8 ps duration pulses, thus demonstrating the feasibility of this device operating with high bit-rate data signals. These results are achieved with pulse peak powers |
doi_str_mv | 10.1364/OPEX.13.007637 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_733223257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733223257</sourcerecordid><originalsourceid>FETCH-LOGICAL-p140t-b6d24f674da74ea856aa8ba58990fbd8c14e02dad24cfc26888ea67f4bf22b9f3</originalsourceid><addsrcrecordid>eNo1kEtLAzEUhYMgtla3LiU7V6N5NY9lKVULhQoquBuSmZtpJPNwMiP47x1sXZ17z_m4cA9CN5TcUy7Fw_5l8zFN94QoydUZmlNiRCaIVjN0mdInIVQooy7QjBphtDJ0jrpt8w1pCJUdQtvg1uME0WfdwSbAdVuO8Ri4aS9x2w2hsBH3UEED_TEKDU6hqeIfD3iV2CtwXBxsLNoJC5NXRZsS9sFBf4XOvY0Jrk-6QO-Pm7f1c7bbP23Xq13WUUGGzMmSCS-VKK0SYPVSWqudXWpjiHelLqgAwko7UYUvmNRag5XKC-cZc8bzBbo73u369mucXszrkAqI0TbQjilXnDPG2VJN5O2JHF0NZd71obb9T_5fEv8F6CRpgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733223257</pqid></control><display><type>article</type><title>Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Fu, L ; Rochette, M ; Ta'eed, V ; Moss, D ; Eggleton, B</creator><creatorcontrib>Fu, L ; Rochette, M ; Ta'eed, V ; Moss, D ; Eggleton, B</creatorcontrib><description>We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate with 5.8 ps duration pulses, thus demonstrating the feasibility of this device operating with high bit-rate data signals. These results are achieved with pulse peak powers <10 W in a fully passive device, including only 2.8 m of chalcogenide fiber. We obtain an excellent agreement between theory and experiment and show that both the high nonlinearity of the chalcogenide glass along with its high normal dispersion near 1550 nm enables a significant device length reduction in comparison with silica-based devices, without compromise on the performance. We find that even for only a few meters of fiber, the large normal dispersion of the chalcogenide glass inhibits spectral oscillations that would appear with self-phase modulation alone. We measure the two photon absorption attenuation coefficient and find that it advantageously affects the device transfer function.</description><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OPEX.13.007637</identifier><identifier>PMID: 19498791</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2005-09, Vol.13 (19), p.7637-7644</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19498791$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, L</creatorcontrib><creatorcontrib>Rochette, M</creatorcontrib><creatorcontrib>Ta'eed, V</creatorcontrib><creatorcontrib>Moss, D</creatorcontrib><creatorcontrib>Eggleton, B</creatorcontrib><title>Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate with 5.8 ps duration pulses, thus demonstrating the feasibility of this device operating with high bit-rate data signals. These results are achieved with pulse peak powers <10 W in a fully passive device, including only 2.8 m of chalcogenide fiber. We obtain an excellent agreement between theory and experiment and show that both the high nonlinearity of the chalcogenide glass along with its high normal dispersion near 1550 nm enables a significant device length reduction in comparison with silica-based devices, without compromise on the performance. We find that even for only a few meters of fiber, the large normal dispersion of the chalcogenide glass inhibits spectral oscillations that would appear with self-phase modulation alone. We measure the two photon absorption attenuation coefficient and find that it advantageously affects the device transfer function.</description><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo1kEtLAzEUhYMgtla3LiU7V6N5NY9lKVULhQoquBuSmZtpJPNwMiP47x1sXZ17z_m4cA9CN5TcUy7Fw_5l8zFN94QoydUZmlNiRCaIVjN0mdInIVQooy7QjBphtDJ0jrpt8w1pCJUdQtvg1uME0WfdwSbAdVuO8Ri4aS9x2w2hsBH3UEED_TEKDU6hqeIfD3iV2CtwXBxsLNoJC5NXRZsS9sFBf4XOvY0Jrk-6QO-Pm7f1c7bbP23Xq13WUUGGzMmSCS-VKK0SYPVSWqudXWpjiHelLqgAwko7UYUvmNRag5XKC-cZc8bzBbo73u369mucXszrkAqI0TbQjilXnDPG2VJN5O2JHF0NZd71obb9T_5fEv8F6CRpgw</recordid><startdate>20050919</startdate><enddate>20050919</enddate><creator>Fu, L</creator><creator>Rochette, M</creator><creator>Ta'eed, V</creator><creator>Moss, D</creator><creator>Eggleton, B</creator><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20050919</creationdate><title>Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber</title><author>Fu, L ; Rochette, M ; Ta'eed, V ; Moss, D ; Eggleton, B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p140t-b6d24f674da74ea856aa8ba58990fbd8c14e02dad24cfc26888ea67f4bf22b9f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, L</creatorcontrib><creatorcontrib>Rochette, M</creatorcontrib><creatorcontrib>Ta'eed, V</creatorcontrib><creatorcontrib>Moss, D</creatorcontrib><creatorcontrib>Eggleton, B</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, L</au><au>Rochette, M</au><au>Ta'eed, V</au><au>Moss, D</au><au>Eggleton, B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2005-09-19</date><risdate>2005</risdate><volume>13</volume><issue>19</issue><spage>7637</spage><epage>7644</epage><pages>7637-7644</pages><eissn>1094-4087</eissn><abstract>We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate with 5.8 ps duration pulses, thus demonstrating the feasibility of this device operating with high bit-rate data signals. These results are achieved with pulse peak powers <10 W in a fully passive device, including only 2.8 m of chalcogenide fiber. We obtain an excellent agreement between theory and experiment and show that both the high nonlinearity of the chalcogenide glass along with its high normal dispersion near 1550 nm enables a significant device length reduction in comparison with silica-based devices, without compromise on the performance. We find that even for only a few meters of fiber, the large normal dispersion of the chalcogenide glass inhibits spectral oscillations that would appear with self-phase modulation alone. We measure the two photon absorption attenuation coefficient and find that it advantageously affects the device transfer function.</abstract><cop>United States</cop><pmid>19498791</pmid><doi>10.1364/OPEX.13.007637</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1094-4087 |
ispartof | Optics express, 2005-09, Vol.13 (19), p.7637-7644 |
issn | 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_733223257 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
title | Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20self-phase%20modulation%20based%20optical%20regeneration%20in%20single%20mode%20As2Se3%20chalcogenide%20glass%20fiber&rft.jtitle=Optics%20express&rft.au=Fu,%20L&rft.date=2005-09-19&rft.volume=13&rft.issue=19&rft.spage=7637&rft.epage=7644&rft.pages=7637-7644&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OPEX.13.007637&rft_dat=%3Cproquest_pubme%3E733223257%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733223257&rft_id=info:pmid/19498791&rfr_iscdi=true |