Spatially resolved acoustic spectroscopy for fast noncontact imaging of material microstructure
We have developed a noncontact and nondestructive technique that uses laser-generated and detected surface acoustic waves to rapidly determine the local acoustic velocity, in order to map the microstructure of multi-grained materials. Optical fringes excite surface waves at a fixed frequency, and th...
Gespeichert in:
Veröffentlicht in: | Optics express 2006-10, Vol.14 (22), p.10435-10440 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10440 |
---|---|
container_issue | 22 |
container_start_page | 10435 |
container_title | Optics express |
container_volume | 14 |
creator | Sharples, Steve D Clark, Matthew Somekh, Mike G |
description | We have developed a noncontact and nondestructive technique that uses laser-generated and detected surface acoustic waves to rapidly determine the local acoustic velocity, in order to map the microstructure of multi-grained materials. Optical fringes excite surface waves at a fixed frequency, and the generation efficiency is determined by how closely the fringe spacing matches the acoustic wavelength in the excitation region. Images of titanium alloys are presented, acquired using the technique. Methods to improve the current lateral resolution of 0.8mm are discussed, and the ability to measure velocity change to an accuracy of one part in 3300 is experimentally demonstrated. |
doi_str_mv | 10.1364/oe.14.010435 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733222475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733222475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-5c97b25b3d833e93114d866e37ae40fb365dd62ab193fdb1471415c1ff007fc43</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EoqWwMSNvLLTY8SWuR1SVD6lSB2C2HOdcBSVxsB2k_ntStRJMd8Nzr-55CbnlbMFFAY8eFxwWjDMQ-RmZcqZgDmwpz__tE3IV4xdjHKSSl2TCVZ4pgGxK9HtvUm2aZk8DRt_8YEWN9UNMtaWxR5uCj9b3e-p8oM7ERDvfWd8lYxOtW7Orux31jrYmYRiDaFvb8SSFwaYh4DW5cKaJeHOaM_L5vP5Yvc4325e31dNmboWCNM-tkmWWl6JaCoFKcA7VsihQSIPAXCmKvKqKzJRcCVeVowcHnlvuHGPSWRAzcn_M7YP_HjAm3dbRYtOYDkcbLYXIsgxkPpIPR_LwZgzodB9Gj7DXnOlDo3q71hz0sdERvzsFD2WL1R98qlD8Aqwgcug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733222475</pqid></control><display><type>article</type><title>Spatially resolved acoustic spectroscopy for fast noncontact imaging of material microstructure</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sharples, Steve D ; Clark, Matthew ; Somekh, Mike G</creator><creatorcontrib>Sharples, Steve D ; Clark, Matthew ; Somekh, Mike G</creatorcontrib><description>We have developed a noncontact and nondestructive technique that uses laser-generated and detected surface acoustic waves to rapidly determine the local acoustic velocity, in order to map the microstructure of multi-grained materials. Optical fringes excite surface waves at a fixed frequency, and the generation efficiency is determined by how closely the fringe spacing matches the acoustic wavelength in the excitation region. Images of titanium alloys are presented, acquired using the technique. Methods to improve the current lateral resolution of 0.8mm are discussed, and the ability to measure velocity change to an accuracy of one part in 3300 is experimentally demonstrated.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/oe.14.010435</identifier><identifier>PMID: 19529442</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2006-10, Vol.14 (22), p.10435-10440</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-5c97b25b3d833e93114d866e37ae40fb365dd62ab193fdb1471415c1ff007fc43</citedby><cites>FETCH-LOGICAL-c394t-5c97b25b3d833e93114d866e37ae40fb365dd62ab193fdb1471415c1ff007fc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19529442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharples, Steve D</creatorcontrib><creatorcontrib>Clark, Matthew</creatorcontrib><creatorcontrib>Somekh, Mike G</creatorcontrib><title>Spatially resolved acoustic spectroscopy for fast noncontact imaging of material microstructure</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>We have developed a noncontact and nondestructive technique that uses laser-generated and detected surface acoustic waves to rapidly determine the local acoustic velocity, in order to map the microstructure of multi-grained materials. Optical fringes excite surface waves at a fixed frequency, and the generation efficiency is determined by how closely the fringe spacing matches the acoustic wavelength in the excitation region. Images of titanium alloys are presented, acquired using the technique. Methods to improve the current lateral resolution of 0.8mm are discussed, and the ability to measure velocity change to an accuracy of one part in 3300 is experimentally demonstrated.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EoqWwMSNvLLTY8SWuR1SVD6lSB2C2HOdcBSVxsB2k_ntStRJMd8Nzr-55CbnlbMFFAY8eFxwWjDMQ-RmZcqZgDmwpz__tE3IV4xdjHKSSl2TCVZ4pgGxK9HtvUm2aZk8DRt_8YEWN9UNMtaWxR5uCj9b3e-p8oM7ERDvfWd8lYxOtW7Orux31jrYmYRiDaFvb8SSFwaYh4DW5cKaJeHOaM_L5vP5Yvc4325e31dNmboWCNM-tkmWWl6JaCoFKcA7VsihQSIPAXCmKvKqKzJRcCVeVowcHnlvuHGPSWRAzcn_M7YP_HjAm3dbRYtOYDkcbLYXIsgxkPpIPR_LwZgzodB9Gj7DXnOlDo3q71hz0sdERvzsFD2WL1R98qlD8Aqwgcug</recordid><startdate>20061030</startdate><enddate>20061030</enddate><creator>Sharples, Steve D</creator><creator>Clark, Matthew</creator><creator>Somekh, Mike G</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20061030</creationdate><title>Spatially resolved acoustic spectroscopy for fast noncontact imaging of material microstructure</title><author>Sharples, Steve D ; Clark, Matthew ; Somekh, Mike G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-5c97b25b3d833e93114d866e37ae40fb365dd62ab193fdb1471415c1ff007fc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharples, Steve D</creatorcontrib><creatorcontrib>Clark, Matthew</creatorcontrib><creatorcontrib>Somekh, Mike G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharples, Steve D</au><au>Clark, Matthew</au><au>Somekh, Mike G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially resolved acoustic spectroscopy for fast noncontact imaging of material microstructure</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2006-10-30</date><risdate>2006</risdate><volume>14</volume><issue>22</issue><spage>10435</spage><epage>10440</epage><pages>10435-10440</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>We have developed a noncontact and nondestructive technique that uses laser-generated and detected surface acoustic waves to rapidly determine the local acoustic velocity, in order to map the microstructure of multi-grained materials. Optical fringes excite surface waves at a fixed frequency, and the generation efficiency is determined by how closely the fringe spacing matches the acoustic wavelength in the excitation region. Images of titanium alloys are presented, acquired using the technique. Methods to improve the current lateral resolution of 0.8mm are discussed, and the ability to measure velocity change to an accuracy of one part in 3300 is experimentally demonstrated.</abstract><cop>United States</cop><pmid>19529442</pmid><doi>10.1364/oe.14.010435</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2006-10, Vol.14 (22), p.10435-10440 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_proquest_miscellaneous_733222475 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
title | Spatially resolved acoustic spectroscopy for fast noncontact imaging of material microstructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20resolved%20acoustic%20spectroscopy%20for%20fast%20noncontact%20imaging%20of%20material%20microstructure&rft.jtitle=Optics%20express&rft.au=Sharples,%20Steve%20D&rft.date=2006-10-30&rft.volume=14&rft.issue=22&rft.spage=10435&rft.epage=10440&rft.pages=10435-10440&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/oe.14.010435&rft_dat=%3Cproquest_cross%3E733222475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733222475&rft_id=info:pmid/19529442&rfr_iscdi=true |