Spatially resolved acoustic spectroscopy for fast noncontact imaging of material microstructure

We have developed a noncontact and nondestructive technique that uses laser-generated and detected surface acoustic waves to rapidly determine the local acoustic velocity, in order to map the microstructure of multi-grained materials. Optical fringes excite surface waves at a fixed frequency, and th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2006-10, Vol.14 (22), p.10435-10440
Hauptverfasser: Sharples, Steve D, Clark, Matthew, Somekh, Mike G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10440
container_issue 22
container_start_page 10435
container_title Optics express
container_volume 14
creator Sharples, Steve D
Clark, Matthew
Somekh, Mike G
description We have developed a noncontact and nondestructive technique that uses laser-generated and detected surface acoustic waves to rapidly determine the local acoustic velocity, in order to map the microstructure of multi-grained materials. Optical fringes excite surface waves at a fixed frequency, and the generation efficiency is determined by how closely the fringe spacing matches the acoustic wavelength in the excitation region. Images of titanium alloys are presented, acquired using the technique. Methods to improve the current lateral resolution of 0.8mm are discussed, and the ability to measure velocity change to an accuracy of one part in 3300 is experimentally demonstrated.
doi_str_mv 10.1364/oe.14.010435
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_733222475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733222475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-5c97b25b3d833e93114d866e37ae40fb365dd62ab193fdb1471415c1ff007fc43</originalsourceid><addsrcrecordid>eNpNkD1PwzAQhi0EoqWwMSNvLLTY8SWuR1SVD6lSB2C2HOdcBSVxsB2k_ntStRJMd8Nzr-55CbnlbMFFAY8eFxwWjDMQ-RmZcqZgDmwpz__tE3IV4xdjHKSSl2TCVZ4pgGxK9HtvUm2aZk8DRt_8YEWN9UNMtaWxR5uCj9b3e-p8oM7ERDvfWd8lYxOtW7Orux31jrYmYRiDaFvb8SSFwaYh4DW5cKaJeHOaM_L5vP5Yvc4325e31dNmboWCNM-tkmWWl6JaCoFKcA7VsihQSIPAXCmKvKqKzJRcCVeVowcHnlvuHGPSWRAzcn_M7YP_HjAm3dbRYtOYDkcbLYXIsgxkPpIPR_LwZgzodB9Gj7DXnOlDo3q71hz0sdERvzsFD2WL1R98qlD8Aqwgcug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733222475</pqid></control><display><type>article</type><title>Spatially resolved acoustic spectroscopy for fast noncontact imaging of material microstructure</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sharples, Steve D ; Clark, Matthew ; Somekh, Mike G</creator><creatorcontrib>Sharples, Steve D ; Clark, Matthew ; Somekh, Mike G</creatorcontrib><description>We have developed a noncontact and nondestructive technique that uses laser-generated and detected surface acoustic waves to rapidly determine the local acoustic velocity, in order to map the microstructure of multi-grained materials. Optical fringes excite surface waves at a fixed frequency, and the generation efficiency is determined by how closely the fringe spacing matches the acoustic wavelength in the excitation region. Images of titanium alloys are presented, acquired using the technique. Methods to improve the current lateral resolution of 0.8mm are discussed, and the ability to measure velocity change to an accuracy of one part in 3300 is experimentally demonstrated.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/oe.14.010435</identifier><identifier>PMID: 19529442</identifier><language>eng</language><publisher>United States</publisher><ispartof>Optics express, 2006-10, Vol.14 (22), p.10435-10440</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-5c97b25b3d833e93114d866e37ae40fb365dd62ab193fdb1471415c1ff007fc43</citedby><cites>FETCH-LOGICAL-c394t-5c97b25b3d833e93114d866e37ae40fb365dd62ab193fdb1471415c1ff007fc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19529442$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharples, Steve D</creatorcontrib><creatorcontrib>Clark, Matthew</creatorcontrib><creatorcontrib>Somekh, Mike G</creatorcontrib><title>Spatially resolved acoustic spectroscopy for fast noncontact imaging of material microstructure</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>We have developed a noncontact and nondestructive technique that uses laser-generated and detected surface acoustic waves to rapidly determine the local acoustic velocity, in order to map the microstructure of multi-grained materials. Optical fringes excite surface waves at a fixed frequency, and the generation efficiency is determined by how closely the fringe spacing matches the acoustic wavelength in the excitation region. Images of titanium alloys are presented, acquired using the technique. Methods to improve the current lateral resolution of 0.8mm are discussed, and the ability to measure velocity change to an accuracy of one part in 3300 is experimentally demonstrated.</description><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAQhi0EoqWwMSNvLLTY8SWuR1SVD6lSB2C2HOdcBSVxsB2k_ntStRJMd8Nzr-55CbnlbMFFAY8eFxwWjDMQ-RmZcqZgDmwpz__tE3IV4xdjHKSSl2TCVZ4pgGxK9HtvUm2aZk8DRt_8YEWN9UNMtaWxR5uCj9b3e-p8oM7ERDvfWd8lYxOtW7Orux31jrYmYRiDaFvb8SSFwaYh4DW5cKaJeHOaM_L5vP5Yvc4325e31dNmboWCNM-tkmWWl6JaCoFKcA7VsihQSIPAXCmKvKqKzJRcCVeVowcHnlvuHGPSWRAzcn_M7YP_HjAm3dbRYtOYDkcbLYXIsgxkPpIPR_LwZgzodB9Gj7DXnOlDo3q71hz0sdERvzsFD2WL1R98qlD8Aqwgcug</recordid><startdate>20061030</startdate><enddate>20061030</enddate><creator>Sharples, Steve D</creator><creator>Clark, Matthew</creator><creator>Somekh, Mike G</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20061030</creationdate><title>Spatially resolved acoustic spectroscopy for fast noncontact imaging of material microstructure</title><author>Sharples, Steve D ; Clark, Matthew ; Somekh, Mike G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-5c97b25b3d833e93114d866e37ae40fb365dd62ab193fdb1471415c1ff007fc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharples, Steve D</creatorcontrib><creatorcontrib>Clark, Matthew</creatorcontrib><creatorcontrib>Somekh, Mike G</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharples, Steve D</au><au>Clark, Matthew</au><au>Somekh, Mike G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatially resolved acoustic spectroscopy for fast noncontact imaging of material microstructure</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2006-10-30</date><risdate>2006</risdate><volume>14</volume><issue>22</issue><spage>10435</spage><epage>10440</epage><pages>10435-10440</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>We have developed a noncontact and nondestructive technique that uses laser-generated and detected surface acoustic waves to rapidly determine the local acoustic velocity, in order to map the microstructure of multi-grained materials. Optical fringes excite surface waves at a fixed frequency, and the generation efficiency is determined by how closely the fringe spacing matches the acoustic wavelength in the excitation region. Images of titanium alloys are presented, acquired using the technique. Methods to improve the current lateral resolution of 0.8mm are discussed, and the ability to measure velocity change to an accuracy of one part in 3300 is experimentally demonstrated.</abstract><cop>United States</cop><pmid>19529442</pmid><doi>10.1364/oe.14.010435</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2006-10, Vol.14 (22), p.10435-10440
issn 1094-4087
1094-4087
language eng
recordid cdi_proquest_miscellaneous_733222475
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Spatially resolved acoustic spectroscopy for fast noncontact imaging of material microstructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A13%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatially%20resolved%20acoustic%20spectroscopy%20for%20fast%20noncontact%20imaging%20of%20material%20microstructure&rft.jtitle=Optics%20express&rft.au=Sharples,%20Steve%20D&rft.date=2006-10-30&rft.volume=14&rft.issue=22&rft.spage=10435&rft.epage=10440&rft.pages=10435-10440&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/oe.14.010435&rft_dat=%3Cproquest_cross%3E733222475%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733222475&rft_id=info:pmid/19529442&rfr_iscdi=true