Vascularization—The Conduit to Viable Engineered Tissues
Long-term viability of thick three-dimensional engineered tissue constructs is a major challenge. Addressing it requires development of vessel-like network that will allow the survival of the construct in vitro and its integration in vivo owing to improved vascularization after implantation. Resulti...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part B, Reviews Reviews, 2009-06, Vol.15 (2), p.159-169 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 169 |
---|---|
container_issue | 2 |
container_start_page | 159 |
container_title | Tissue engineering. Part B, Reviews |
container_volume | 15 |
creator | Kaully, Tamar Kaufman-Francis, Keren Lesman, Ayelet Levenberg, Shulamit |
description | Long-term viability of thick three-dimensional engineered tissue constructs is a major challenge. Addressing it requires development of vessel-like network that will allow the survival of the construct
in vitro
and its integration
in vivo
owing to improved vascularization after implantation. Resulting from work of various research groups, several approaches were developed aiming engineered tissue vascularization: (1) embodiment of angiogenesis growth factors in the polymeric scaffolds for prolonged release, (2) coculture of endothelial cells with target tissue cells and angiogenesis signaling cells, (3) use of microfabrication methods for creating designed channels for allowing nutrients to flow and/or for directing endothelial cells attachment, and (4) decellularization of organs and blood vessels for creating extracellular matrix. A synergistic effect is expected by combining several of these approaches as already demonstrated in some of the latest studies. Current paper reviews the progress in each approach and recent achievements toward vascularization of engineered tissues. |
doi_str_mv | 10.1089/ten.teb.2008.0193 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_733220820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A207113738</galeid><sourcerecordid>A207113738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-2e83dbc3ae6dd88573d893a7c02d484fa37cb76d17dec1ebae2af63607b8fee83</originalsourceid><addsrcrecordid>eNqNkc2OFCEQx4nRuOvqA3gxHU30NG0Bs0B720zWj2QTL-NeCR_VK5seWIE-6MmH8An3SZbOTDQaYwyBIsXvXxT8CXlKoaeghtcVY1_R9gxA9UAHfo8ct1WuOJfi_s-9UEfkUSnXAAKEVA_JUTuAgXF1TN5cmuLmyeTwzdSQ4u33H9vP2G1S9HOoXU3dZTB2wu48XoWImNF321DKjOUxeTCaqeCTQzwhn96ebzfvVxcf333YnF2s3Ckf6oqh4t46blB4r9Sp5F4N3EgHzK_VejRcOiuFp9Kjo2gNMjMKLkBaNWITn5BX-7o3OX1p91a9C8XhNJmIaS5acs4YKAaNfPlPkoEYKB3WDXz-B3id5hzbKxrD28eA4g16sYeuzIQ6xDHVbNxSUZ8xkJRyyZfu-r9QbXjcBZcijqHlfxPQvcDlVErGUd_ksDP5q6agF1t1s7VNqxdb9WJr0zw79DvbHfpfioOPDZB7YEmbGKeAFnP9j9J3fRGxBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203238083</pqid></control><display><type>article</type><title>Vascularization—The Conduit to Viable Engineered Tissues</title><source>Mary Ann Liebert Online Subscription</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Kaully, Tamar ; Kaufman-Francis, Keren ; Lesman, Ayelet ; Levenberg, Shulamit</creator><creatorcontrib>Kaully, Tamar ; Kaufman-Francis, Keren ; Lesman, Ayelet ; Levenberg, Shulamit</creatorcontrib><description>Long-term viability of thick three-dimensional engineered tissue constructs is a major challenge. Addressing it requires development of vessel-like network that will allow the survival of the construct
in vitro
and its integration
in vivo
owing to improved vascularization after implantation. Resulting from work of various research groups, several approaches were developed aiming engineered tissue vascularization: (1) embodiment of angiogenesis growth factors in the polymeric scaffolds for prolonged release, (2) coculture of endothelial cells with target tissue cells and angiogenesis signaling cells, (3) use of microfabrication methods for creating designed channels for allowing nutrients to flow and/or for directing endothelial cells attachment, and (4) decellularization of organs and blood vessels for creating extracellular matrix. A synergistic effect is expected by combining several of these approaches as already demonstrated in some of the latest studies. Current paper reviews the progress in each approach and recent achievements toward vascularization of engineered tissues.</description><identifier>ISSN: 1937-3368</identifier><identifier>EISSN: 1937-3376</identifier><identifier>DOI: 10.1089/ten.teb.2008.0193</identifier><identifier>PMID: 19309238</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Blood Vessels - physiology ; Cell culture ; Cellular biology ; Coculture Techniques ; Extracellular matrix ; Humans ; Integrated approach ; Intercellular Signaling Peptides and Proteins - secretion ; Methods ; Neovascularization, Physiologic ; Physiological aspects ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Veins & arteries</subject><ispartof>Tissue engineering. Part B, Reviews, 2009-06, Vol.15 (2), p.159-169</ispartof><rights>2009, Mary Ann Liebert, Inc.</rights><rights>COPYRIGHT 2009 Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2009, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-2e83dbc3ae6dd88573d893a7c02d484fa37cb76d17dec1ebae2af63607b8fee83</citedby><cites>FETCH-LOGICAL-c539t-2e83dbc3ae6dd88573d893a7c02d484fa37cb76d17dec1ebae2af63607b8fee83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.liebertpub.com/doi/epdf/10.1089/ten.teb.2008.0193$$EPDF$$P50$$Gmaryannliebert$$H</linktopdf><linktohtml>$$Uhttps://www.liebertpub.com/doi/full/10.1089/ten.teb.2008.0193$$EHTML$$P50$$Gmaryannliebert$$H</linktohtml><link.rule.ids>314,777,781,3029,21704,27905,27906,55272,55284</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19309238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaully, Tamar</creatorcontrib><creatorcontrib>Kaufman-Francis, Keren</creatorcontrib><creatorcontrib>Lesman, Ayelet</creatorcontrib><creatorcontrib>Levenberg, Shulamit</creatorcontrib><title>Vascularization—The Conduit to Viable Engineered Tissues</title><title>Tissue engineering. Part B, Reviews</title><addtitle>Tissue Eng Part B Rev</addtitle><description>Long-term viability of thick three-dimensional engineered tissue constructs is a major challenge. Addressing it requires development of vessel-like network that will allow the survival of the construct
in vitro
and its integration
in vivo
owing to improved vascularization after implantation. Resulting from work of various research groups, several approaches were developed aiming engineered tissue vascularization: (1) embodiment of angiogenesis growth factors in the polymeric scaffolds for prolonged release, (2) coculture of endothelial cells with target tissue cells and angiogenesis signaling cells, (3) use of microfabrication methods for creating designed channels for allowing nutrients to flow and/or for directing endothelial cells attachment, and (4) decellularization of organs and blood vessels for creating extracellular matrix. A synergistic effect is expected by combining several of these approaches as already demonstrated in some of the latest studies. Current paper reviews the progress in each approach and recent achievements toward vascularization of engineered tissues.</description><subject>Animals</subject><subject>Blood Vessels - physiology</subject><subject>Cell culture</subject><subject>Cellular biology</subject><subject>Coculture Techniques</subject><subject>Extracellular matrix</subject><subject>Humans</subject><subject>Integrated approach</subject><subject>Intercellular Signaling Peptides and Proteins - secretion</subject><subject>Methods</subject><subject>Neovascularization, Physiologic</subject><subject>Physiological aspects</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Veins & arteries</subject><issn>1937-3368</issn><issn>1937-3376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc2OFCEQx4nRuOvqA3gxHU30NG0Bs0B720zWj2QTL-NeCR_VK5seWIE-6MmH8An3SZbOTDQaYwyBIsXvXxT8CXlKoaeghtcVY1_R9gxA9UAHfo8ct1WuOJfi_s-9UEfkUSnXAAKEVA_JUTuAgXF1TN5cmuLmyeTwzdSQ4u33H9vP2G1S9HOoXU3dZTB2wu48XoWImNF321DKjOUxeTCaqeCTQzwhn96ebzfvVxcf333YnF2s3Ckf6oqh4t46blB4r9Sp5F4N3EgHzK_VejRcOiuFp9Kjo2gNMjMKLkBaNWITn5BX-7o3OX1p91a9C8XhNJmIaS5acs4YKAaNfPlPkoEYKB3WDXz-B3id5hzbKxrD28eA4g16sYeuzIQ6xDHVbNxSUZ8xkJRyyZfu-r9QbXjcBZcijqHlfxPQvcDlVErGUd_ksDP5q6agF1t1s7VNqxdb9WJr0zw79DvbHfpfioOPDZB7YEmbGKeAFnP9j9J3fRGxBA</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Kaully, Tamar</creator><creator>Kaufman-Francis, Keren</creator><creator>Lesman, Ayelet</creator><creator>Levenberg, Shulamit</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20090601</creationdate><title>Vascularization—The Conduit to Viable Engineered Tissues</title><author>Kaully, Tamar ; Kaufman-Francis, Keren ; Lesman, Ayelet ; Levenberg, Shulamit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-2e83dbc3ae6dd88573d893a7c02d484fa37cb76d17dec1ebae2af63607b8fee83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Blood Vessels - physiology</topic><topic>Cell culture</topic><topic>Cellular biology</topic><topic>Coculture Techniques</topic><topic>Extracellular matrix</topic><topic>Humans</topic><topic>Integrated approach</topic><topic>Intercellular Signaling Peptides and Proteins - secretion</topic><topic>Methods</topic><topic>Neovascularization, Physiologic</topic><topic>Physiological aspects</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Veins & arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaully, Tamar</creatorcontrib><creatorcontrib>Kaufman-Francis, Keren</creatorcontrib><creatorcontrib>Lesman, Ayelet</creatorcontrib><creatorcontrib>Levenberg, Shulamit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Tissue engineering. Part B, Reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaully, Tamar</au><au>Kaufman-Francis, Keren</au><au>Lesman, Ayelet</au><au>Levenberg, Shulamit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascularization—The Conduit to Viable Engineered Tissues</atitle><jtitle>Tissue engineering. Part B, Reviews</jtitle><addtitle>Tissue Eng Part B Rev</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>15</volume><issue>2</issue><spage>159</spage><epage>169</epage><pages>159-169</pages><issn>1937-3368</issn><eissn>1937-3376</eissn><abstract>Long-term viability of thick three-dimensional engineered tissue constructs is a major challenge. Addressing it requires development of vessel-like network that will allow the survival of the construct
in vitro
and its integration
in vivo
owing to improved vascularization after implantation. Resulting from work of various research groups, several approaches were developed aiming engineered tissue vascularization: (1) embodiment of angiogenesis growth factors in the polymeric scaffolds for prolonged release, (2) coculture of endothelial cells with target tissue cells and angiogenesis signaling cells, (3) use of microfabrication methods for creating designed channels for allowing nutrients to flow and/or for directing endothelial cells attachment, and (4) decellularization of organs and blood vessels for creating extracellular matrix. A synergistic effect is expected by combining several of these approaches as already demonstrated in some of the latest studies. Current paper reviews the progress in each approach and recent achievements toward vascularization of engineered tissues.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>19309238</pmid><doi>10.1089/ten.teb.2008.0193</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-3368 |
ispartof | Tissue engineering. Part B, Reviews, 2009-06, Vol.15 (2), p.159-169 |
issn | 1937-3368 1937-3376 |
language | eng |
recordid | cdi_proquest_miscellaneous_733220820 |
source | Mary Ann Liebert Online Subscription; MEDLINE; Alma/SFX Local Collection |
subjects | Animals Blood Vessels - physiology Cell culture Cellular biology Coculture Techniques Extracellular matrix Humans Integrated approach Intercellular Signaling Peptides and Proteins - secretion Methods Neovascularization, Physiologic Physiological aspects Tissue engineering Tissue Engineering - methods Tissue Scaffolds - chemistry Veins & arteries |
title | Vascularization—The Conduit to Viable Engineered Tissues |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascularization%E2%80%94The%20Conduit%20to%20Viable%20Engineered%20Tissues&rft.jtitle=Tissue%20engineering.%20Part%20B,%20Reviews&rft.au=Kaully,%20Tamar&rft.date=2009-06-01&rft.volume=15&rft.issue=2&rft.spage=159&rft.epage=169&rft.pages=159-169&rft.issn=1937-3368&rft.eissn=1937-3376&rft_id=info:doi/10.1089/ten.teb.2008.0193&rft_dat=%3Cgale_proqu%3EA207113738%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203238083&rft_id=info:pmid/19309238&rft_galeid=A207113738&rfr_iscdi=true |