Vascularization—The Conduit to Viable Engineered Tissues

Long-term viability of thick three-dimensional engineered tissue constructs is a major challenge. Addressing it requires development of vessel-like network that will allow the survival of the construct in vitro and its integration in vivo owing to improved vascularization after implantation. Resulti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tissue engineering. Part B, Reviews Reviews, 2009-06, Vol.15 (2), p.159-169
Hauptverfasser: Kaully, Tamar, Kaufman-Francis, Keren, Lesman, Ayelet, Levenberg, Shulamit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 169
container_issue 2
container_start_page 159
container_title Tissue engineering. Part B, Reviews
container_volume 15
creator Kaully, Tamar
Kaufman-Francis, Keren
Lesman, Ayelet
Levenberg, Shulamit
description Long-term viability of thick three-dimensional engineered tissue constructs is a major challenge. Addressing it requires development of vessel-like network that will allow the survival of the construct in vitro and its integration in vivo owing to improved vascularization after implantation. Resulting from work of various research groups, several approaches were developed aiming engineered tissue vascularization: (1) embodiment of angiogenesis growth factors in the polymeric scaffolds for prolonged release, (2) coculture of endothelial cells with target tissue cells and angiogenesis signaling cells, (3) use of microfabrication methods for creating designed channels for allowing nutrients to flow and/or for directing endothelial cells attachment, and (4) decellularization of organs and blood vessels for creating extracellular matrix. A synergistic effect is expected by combining several of these approaches as already demonstrated in some of the latest studies. Current paper reviews the progress in each approach and recent achievements toward vascularization of engineered tissues.
doi_str_mv 10.1089/ten.teb.2008.0193
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_733220820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A207113738</galeid><sourcerecordid>A207113738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-2e83dbc3ae6dd88573d893a7c02d484fa37cb76d17dec1ebae2af63607b8fee83</originalsourceid><addsrcrecordid>eNqNkc2OFCEQx4nRuOvqA3gxHU30NG0Bs0B720zWj2QTL-NeCR_VK5seWIE-6MmH8An3SZbOTDQaYwyBIsXvXxT8CXlKoaeghtcVY1_R9gxA9UAHfo8ct1WuOJfi_s-9UEfkUSnXAAKEVA_JUTuAgXF1TN5cmuLmyeTwzdSQ4u33H9vP2G1S9HOoXU3dZTB2wu48XoWImNF321DKjOUxeTCaqeCTQzwhn96ebzfvVxcf333YnF2s3Ckf6oqh4t46blB4r9Sp5F4N3EgHzK_VejRcOiuFp9Kjo2gNMjMKLkBaNWITn5BX-7o3OX1p91a9C8XhNJmIaS5acs4YKAaNfPlPkoEYKB3WDXz-B3id5hzbKxrD28eA4g16sYeuzIQ6xDHVbNxSUZ8xkJRyyZfu-r9QbXjcBZcijqHlfxPQvcDlVErGUd_ksDP5q6agF1t1s7VNqxdb9WJr0zw79DvbHfpfioOPDZB7YEmbGKeAFnP9j9J3fRGxBA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>203238083</pqid></control><display><type>article</type><title>Vascularization—The Conduit to Viable Engineered Tissues</title><source>Mary Ann Liebert Online Subscription</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Kaully, Tamar ; Kaufman-Francis, Keren ; Lesman, Ayelet ; Levenberg, Shulamit</creator><creatorcontrib>Kaully, Tamar ; Kaufman-Francis, Keren ; Lesman, Ayelet ; Levenberg, Shulamit</creatorcontrib><description>Long-term viability of thick three-dimensional engineered tissue constructs is a major challenge. Addressing it requires development of vessel-like network that will allow the survival of the construct in vitro and its integration in vivo owing to improved vascularization after implantation. Resulting from work of various research groups, several approaches were developed aiming engineered tissue vascularization: (1) embodiment of angiogenesis growth factors in the polymeric scaffolds for prolonged release, (2) coculture of endothelial cells with target tissue cells and angiogenesis signaling cells, (3) use of microfabrication methods for creating designed channels for allowing nutrients to flow and/or for directing endothelial cells attachment, and (4) decellularization of organs and blood vessels for creating extracellular matrix. A synergistic effect is expected by combining several of these approaches as already demonstrated in some of the latest studies. Current paper reviews the progress in each approach and recent achievements toward vascularization of engineered tissues.</description><identifier>ISSN: 1937-3368</identifier><identifier>EISSN: 1937-3376</identifier><identifier>DOI: 10.1089/ten.teb.2008.0193</identifier><identifier>PMID: 19309238</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Blood Vessels - physiology ; Cell culture ; Cellular biology ; Coculture Techniques ; Extracellular matrix ; Humans ; Integrated approach ; Intercellular Signaling Peptides and Proteins - secretion ; Methods ; Neovascularization, Physiologic ; Physiological aspects ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds - chemistry ; Veins &amp; arteries</subject><ispartof>Tissue engineering. Part B, Reviews, 2009-06, Vol.15 (2), p.159-169</ispartof><rights>2009, Mary Ann Liebert, Inc.</rights><rights>COPYRIGHT 2009 Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2009, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-2e83dbc3ae6dd88573d893a7c02d484fa37cb76d17dec1ebae2af63607b8fee83</citedby><cites>FETCH-LOGICAL-c539t-2e83dbc3ae6dd88573d893a7c02d484fa37cb76d17dec1ebae2af63607b8fee83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.liebertpub.com/doi/epdf/10.1089/ten.teb.2008.0193$$EPDF$$P50$$Gmaryannliebert$$H</linktopdf><linktohtml>$$Uhttps://www.liebertpub.com/doi/full/10.1089/ten.teb.2008.0193$$EHTML$$P50$$Gmaryannliebert$$H</linktohtml><link.rule.ids>314,777,781,3029,21704,27905,27906,55272,55284</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19309238$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaully, Tamar</creatorcontrib><creatorcontrib>Kaufman-Francis, Keren</creatorcontrib><creatorcontrib>Lesman, Ayelet</creatorcontrib><creatorcontrib>Levenberg, Shulamit</creatorcontrib><title>Vascularization—The Conduit to Viable Engineered Tissues</title><title>Tissue engineering. Part B, Reviews</title><addtitle>Tissue Eng Part B Rev</addtitle><description>Long-term viability of thick three-dimensional engineered tissue constructs is a major challenge. Addressing it requires development of vessel-like network that will allow the survival of the construct in vitro and its integration in vivo owing to improved vascularization after implantation. Resulting from work of various research groups, several approaches were developed aiming engineered tissue vascularization: (1) embodiment of angiogenesis growth factors in the polymeric scaffolds for prolonged release, (2) coculture of endothelial cells with target tissue cells and angiogenesis signaling cells, (3) use of microfabrication methods for creating designed channels for allowing nutrients to flow and/or for directing endothelial cells attachment, and (4) decellularization of organs and blood vessels for creating extracellular matrix. A synergistic effect is expected by combining several of these approaches as already demonstrated in some of the latest studies. Current paper reviews the progress in each approach and recent achievements toward vascularization of engineered tissues.</description><subject>Animals</subject><subject>Blood Vessels - physiology</subject><subject>Cell culture</subject><subject>Cellular biology</subject><subject>Coculture Techniques</subject><subject>Extracellular matrix</subject><subject>Humans</subject><subject>Integrated approach</subject><subject>Intercellular Signaling Peptides and Proteins - secretion</subject><subject>Methods</subject><subject>Neovascularization, Physiologic</subject><subject>Physiological aspects</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Veins &amp; arteries</subject><issn>1937-3368</issn><issn>1937-3376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc2OFCEQx4nRuOvqA3gxHU30NG0Bs0B720zWj2QTL-NeCR_VK5seWIE-6MmH8An3SZbOTDQaYwyBIsXvXxT8CXlKoaeghtcVY1_R9gxA9UAHfo8ct1WuOJfi_s-9UEfkUSnXAAKEVA_JUTuAgXF1TN5cmuLmyeTwzdSQ4u33H9vP2G1S9HOoXU3dZTB2wu48XoWImNF321DKjOUxeTCaqeCTQzwhn96ebzfvVxcf333YnF2s3Ckf6oqh4t46blB4r9Sp5F4N3EgHzK_VejRcOiuFp9Kjo2gNMjMKLkBaNWITn5BX-7o3OX1p91a9C8XhNJmIaS5acs4YKAaNfPlPkoEYKB3WDXz-B3id5hzbKxrD28eA4g16sYeuzIQ6xDHVbNxSUZ8xkJRyyZfu-r9QbXjcBZcijqHlfxPQvcDlVErGUd_ksDP5q6agF1t1s7VNqxdb9WJr0zw79DvbHfpfioOPDZB7YEmbGKeAFnP9j9J3fRGxBA</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Kaully, Tamar</creator><creator>Kaufman-Francis, Keren</creator><creator>Lesman, Ayelet</creator><creator>Levenberg, Shulamit</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20090601</creationdate><title>Vascularization—The Conduit to Viable Engineered Tissues</title><author>Kaully, Tamar ; Kaufman-Francis, Keren ; Lesman, Ayelet ; Levenberg, Shulamit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-2e83dbc3ae6dd88573d893a7c02d484fa37cb76d17dec1ebae2af63607b8fee83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Blood Vessels - physiology</topic><topic>Cell culture</topic><topic>Cellular biology</topic><topic>Coculture Techniques</topic><topic>Extracellular matrix</topic><topic>Humans</topic><topic>Integrated approach</topic><topic>Intercellular Signaling Peptides and Proteins - secretion</topic><topic>Methods</topic><topic>Neovascularization, Physiologic</topic><topic>Physiological aspects</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaully, Tamar</creatorcontrib><creatorcontrib>Kaufman-Francis, Keren</creatorcontrib><creatorcontrib>Lesman, Ayelet</creatorcontrib><creatorcontrib>Levenberg, Shulamit</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Tissue engineering. Part B, Reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaully, Tamar</au><au>Kaufman-Francis, Keren</au><au>Lesman, Ayelet</au><au>Levenberg, Shulamit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascularization—The Conduit to Viable Engineered Tissues</atitle><jtitle>Tissue engineering. Part B, Reviews</jtitle><addtitle>Tissue Eng Part B Rev</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>15</volume><issue>2</issue><spage>159</spage><epage>169</epage><pages>159-169</pages><issn>1937-3368</issn><eissn>1937-3376</eissn><abstract>Long-term viability of thick three-dimensional engineered tissue constructs is a major challenge. Addressing it requires development of vessel-like network that will allow the survival of the construct in vitro and its integration in vivo owing to improved vascularization after implantation. Resulting from work of various research groups, several approaches were developed aiming engineered tissue vascularization: (1) embodiment of angiogenesis growth factors in the polymeric scaffolds for prolonged release, (2) coculture of endothelial cells with target tissue cells and angiogenesis signaling cells, (3) use of microfabrication methods for creating designed channels for allowing nutrients to flow and/or for directing endothelial cells attachment, and (4) decellularization of organs and blood vessels for creating extracellular matrix. A synergistic effect is expected by combining several of these approaches as already demonstrated in some of the latest studies. Current paper reviews the progress in each approach and recent achievements toward vascularization of engineered tissues.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>19309238</pmid><doi>10.1089/ten.teb.2008.0193</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1937-3368
ispartof Tissue engineering. Part B, Reviews, 2009-06, Vol.15 (2), p.159-169
issn 1937-3368
1937-3376
language eng
recordid cdi_proquest_miscellaneous_733220820
source Mary Ann Liebert Online Subscription; MEDLINE; Alma/SFX Local Collection
subjects Animals
Blood Vessels - physiology
Cell culture
Cellular biology
Coculture Techniques
Extracellular matrix
Humans
Integrated approach
Intercellular Signaling Peptides and Proteins - secretion
Methods
Neovascularization, Physiologic
Physiological aspects
Tissue engineering
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Veins & arteries
title Vascularization—The Conduit to Viable Engineered Tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascularization%E2%80%94The%20Conduit%20to%20Viable%20Engineered%20Tissues&rft.jtitle=Tissue%20engineering.%20Part%20B,%20Reviews&rft.au=Kaully,%20Tamar&rft.date=2009-06-01&rft.volume=15&rft.issue=2&rft.spage=159&rft.epage=169&rft.pages=159-169&rft.issn=1937-3368&rft.eissn=1937-3376&rft_id=info:doi/10.1089/ten.teb.2008.0193&rft_dat=%3Cgale_proqu%3EA207113738%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=203238083&rft_id=info:pmid/19309238&rft_galeid=A207113738&rfr_iscdi=true